Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ferroelectric liquid

Finally we can conclude that confinement could be responsible for nonmonotonic relaxation kinetics and could provide a specific saddle-like temperature dependence of the relaxation time. The experimental examples discussed show that this type of kinetics may be inherent in systems of completely different natures confined liquids, ferroelectric crystals, and it was even demonstrated recently macromolecular folding kinetics [78]. In each case, the specific interpretation of the parameters of model (129) depends on the discussed experimental situation. We are far from the opinion that confinement is the only reason for nonmonotonic relaxation kinetics. However, for all the examples discussed in this paper, the nonmonotonic dependence of the relaxation time on temperature has the same origin, that is, confinement either in real or configurational space. [Pg.105]

What s about liquid ferroelectric Let us examine the qualitative criterion... [Pg.382]

As witli tlie nematic phase, a chiral version of tlie smectic C phase has been observed and is denoted SniC. In tliis phase, tlie director rotates around tlie cone generated by tlie tilt angle [9,32]. This phase is helielectric, i.e. tlie spontaneous polarization induced by dipolar ordering (transverse to tlie molecular long axis) rotates around a helix. However, if tlie helix is unwound by external forces such as surface interactions, or electric fields or by compensating tlie pitch in a mixture, so tliat it becomes infinite, tlie phase becomes ferroelectric. This is tlie basis of ferroelectric liquid crystal displays (section C2.2.4.4). If tliere is an alternation in polarization direction between layers tlie phase can be ferrielectric or antiferroelectric. A smectic A phase foniied by chiral molecules is sometimes denoted SiiiA, altliough, due to the untilted symmetry of tlie phase, it is not itself chiral. This notation is strictly incorrect because tlie asterisk should be used to indicate the chirality of tlie phase and not tliat of tlie constituent molecules. [Pg.2549]

Lagerwall S T 1998 Ferroelectric liquid crystals Handbook of Liquid Crystals Vol 2B. Low Molecular Weight Liquid Crystals II ed D Demus, J Goodby, G W Gray, H-W Speiss and V Vill (New York Wiley-VCH)... [Pg.2571]

Ferroelectric Liquid Crystals Principles, Properties and Applications (PMade ph a Gordon and Breach)... [Pg.2571]

Clark N A, Handschy M A and Lagerwall S T 1983 Ferroelectric liquid crystal electro-optics using the surface stabilized structure Molec. Cryst. Liq. Cryst. 94 213-34... [Pg.2571]

K. A. Epstein and co-workers, "Fluorinated Ferroelectric Liquid Crystals Overview and Synthesis," Eleventh Winter Fluorine Conference, St. Petersburg, Fla., 1993. [Pg.316]

The structure formation in an ER fluid was simulated [99]. The characteristic parameter is the ratio of the Brownian force to the dipolar force. Over a wide range of this ratio there is rapid chain formation followed by aggregation of chains into thick columns with a body-centered tetragonal structure observed. Above a threshold of the intensity of an external ahgn-ing field, condensation of the particles happens [100]. This effect has also been studied for MR fluids [101]. The rheological behavior of ER fluids [102] depends on the structure formed chainlike, shear-string, or liquid. Coexistence in dipolar fluids in a field [103], for a Stockmayer fluid in an applied field [104], and the structure of soft-sphere dipolar fluids were investigated [105], and ferroelectric phases were found [106]. An island of vapor-liquid coexistence was found for dipolar hard spherocylinders [107]. It exists between a phase where the particles form chains of dipoles in a nose-to-tail... [Pg.764]

Five-membered sulfur-containing heterocycles are important synthetic intermediates and have found a variety of applications in medical, agricultural, and material chemistry. Looking for potential candidates for ferroelectric display applications. Seed s group investigated the preparation of liquid crystals... [Pg.61]

Other more exotic types of calamitic liquid crystal molecules include those having chiral components. This molecular modification leads to the formation of chiral nematic phases in which the director adopts a natural helical twist which may range from sub-micron to macroscopic length scales. Chirality coupled with smectic ordering may also lead to the formation of ferroelectric phases [20]. [Pg.7]

In the operation of ferroelectric liquid crystal devices, the applied electric field couples directly to the spontaneous polarisation Ps and response times depend on the magnitude E Ps. Depending on the electronic structure (magnitude and direction of the dipole moment as well as position and polarity of the chiral species) and ordering of the molecules P can vary over several orders of magnitude (3 to 1.2 x 10 ), giving response times in the range 1-100 ps. [Pg.14]

In this section, we will present the crystal structures of chiral mesogenic compounds exhibiting ferroelectric liquid crystalline phases which are listed in Table 18 [152-166]. Moreover, four compounds of the list show antiferroelectric properties and two compounds form only orthogonal smectic phases. The general chemical structures of the investigated chiral compounds are shown in Fig. 27. [Pg.184]

Omenat, A., Serrano, J.L., Sierra, T., Amabilino, D.B., Minguet, M., Ramos, E. and Veciana, J. (1999) Chiral linear isocyanide palladium(II) and gold(I) complexes as ferroelectric liquid crystals. Journal of Materials Chemistry, 9, 2301-2305. [Pg.392]

In addition, some liquid-crystalline elastomers are ferroelectric (possess spontaneous electric polarization) [196,197], or piezoelectric (become electrically... [Pg.369]

Liquid Crystal Displays (LCD). Liquid crystal displays, once limited to small devices such as calculators, are now displacing color CRT (cathode ray tube) displays in commercial quantities. The ability to fabricate these display devices at high quality and at low cost is partially due to the wider spread use of photopolymer-based materials. Photopolymer technology is being used for the alignment of liquid crystal (LC) elements (49), the orientation of ferroelectric materials (50), the synthesis of LC polymers (57) and the manufacture of color filters for liquid crystal display applications (52). [Pg.8]

Photopolymerization and Electrooptic Properties of Polymer Network/Ferroelectric Liquid-Crystal... [Pg.16]

To produce novel LC phase behavior and properties, a variety of polymer/LC composites have been developed. These include systems which employ liquid crystal polymers (5), phase separation of LC droplets in polymer dispersed liquid crystals (PDLCs) (4), incorporating both nematic (5,6) and ferroelectric liquid crystals (6-10). Polymer/LC gels have also been studied which are formed by the polymerization of small amounts of monomer solutes in a liquid crystalline solvent (11). The polymer/LC gel systems are of particular interest, rendering bistable chiral nematic devices (12) and polymer stabilized ferroelectric liquid crystals (PSFLCs) (1,13), which combine fast electro-optic response (14) with the increased mechanical stabilization imparted by the polymer (75). [Pg.17]

The amorphous diacrylate monomers chosen for study were two commercially available monomers, p-phenylene diacrylate (PPDA) and 1,6-hexanediol diacrylate (HDDA) (Polysciences, Inc., Warrington, PA). The liquid crystalline diacrylate studied was 1,4-di-(4-(6-acryloyloxyhexyloxy)benzoyloxy)-2-methylbenzene (C6M) (13). Chemical structures of these monomers as well as pertinent physical and LC properties are given in Figure 1. All monomers were used without further purification. The ferroelectric liquid crystal mixture consisted of a 1 1 mixture of W7 and W82 (1) (Displaytech, Boulder, CO). This mixture exhibits isotropic (I), smectic A... [Pg.18]

The earliest approach to explain tubule formation was developed by de Gen-nes.168 He pointed out that, in a bilayer membrane of chiral molecules in the Lp/ phase, symmetry allows the material to have a net electric dipole moment in the bilayer plane, like a chiral smectic-C liquid crystal.169 In other words, the material is ferroelectric, with a spontaneous electrostatic polarization P per unit area in the bilayer plane, perpendicular to the axis of molecular tilt. (Note that this argument depends on the chirality of the molecules, but it does not depend on the chiral elastic properties of the membrane. For that reason, we discuss it in this section, rather than with the chiral elastic models in the following sections.)... [Pg.343]

It was quickly recognized that chirality would play an important role in discotic liquid crystals, not only for the possibility of creating cholesteric and ferroelectric liquid crystals but also as a tool for studying the self-assembly of these molecules as a whole, both in solution and in the solid state. However, initial studies revealed that expression of chirality in discotic liquid crystals was not as straightforward as for liquid crystals derived from calamitic molecules. More recently, with the increase in interest in self-assembly and molecular recognition, considerably more attention has been directed to the study of chiral discotics and their assemblies in solution. The objective of this chapter is... [Pg.376]

To understand how chirality is expressed, it is important to first describe the different thermotropic mesophase assemblies which can be formed by chiral discotics. Even though expression of chirality has been observed in thermotropic mesophases, the chiral expression occurs in a rather uncontrolled manner, and systems which are suitable for applications, for example, easily switchable columns/ferroelectric discotic liquid crystals, consequently have not yet been developed. Hence, the assembly of discotics in solution has received considerable attention. Supramolecular assemblies of discotic molecules in solution are still in their infancy and have not yet found commercial application, but they are of fundamental importance since they allow a detailed and focused investigation of the specific interactions that are required to express chirality at higher levels of organization. As such, the fundamental knowledge acquired from supramolecular assemblies in solution might formulate the design criteria for thermotropic chiral discotic mesophases and provide the necessary tools for the creation of functional systems. [Pg.377]


See other pages where Ferroelectric liquid is mentioned: [Pg.1535]    [Pg.1535]    [Pg.2543]    [Pg.2565]    [Pg.397]    [Pg.55]    [Pg.24]    [Pg.140]    [Pg.184]    [Pg.206]    [Pg.219]    [Pg.231]    [Pg.232]    [Pg.117]    [Pg.578]    [Pg.110]    [Pg.16]    [Pg.392]    [Pg.396]    [Pg.457]    [Pg.457]    [Pg.458]    [Pg.458]    [Pg.460]    [Pg.462]   
See also in sourсe #XX -- [ Pg.476 , Pg.551 ]




SEARCH



© 2024 chempedia.info