Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Directors nematics

In general, the elastic term includes the elasticity related to the reorientation of the director (nematic moduli T ), and to a change in the tilt angle (coefficients a, b, c, etc., of the Landau expansion see e.g. Eq. (10)). The corresponding expression for gj is very complex and may be found in Pikin [7]. The surface energy includes both the dispersion and the polar terms of the anchoring energy Wg. Below we consider a few rather simple cases. [Pg.542]

Figure C2.2.2. Isotropic, nematic and chiral nematic phases. Here n denotes tire director. In tire chiral nematic phase, tire director undergoes a helical rotation, as schematically indicated by its reorientation around a cone. Figure C2.2.2. Isotropic, nematic and chiral nematic phases. Here n denotes tire director. In tire chiral nematic phase, tire director undergoes a helical rotation, as schematically indicated by its reorientation around a cone.
As witli tlie nematic phase, a chiral version of tlie smectic C phase has been observed and is denoted SniC. In tliis phase, tlie director rotates around tlie cone generated by tlie tilt angle [9,32]. This phase is helielectric, i.e. tlie spontaneous polarization induced by dipolar ordering (transverse to tlie molecular long axis) rotates around a helix. However, if tlie helix is unwound by external forces such as surface interactions, or electric fields or by compensating tlie pitch in a mixture, so tliat it becomes infinite, tlie phase becomes ferroelectric. This is tlie basis of ferroelectric liquid crystal displays (section C2.2.4.4). If tliere is an alternation in polarization direction between layers tlie phase can be ferrielectric or antiferroelectric. A smectic A phase foniied by chiral molecules is sometimes denoted SiiiA, altliough, due to the untilted symmetry of tlie phase, it is not itself chiral. This notation is strictly incorrect because tlie asterisk should be used to indicate the chirality of tlie phase and not tliat of tlie constituent molecules. [Pg.2549]

Disclinations in tire nematic phase produce tire characteristic Schlieren texture, observed under tire microscope using crossed polars for samples between glass plates when tire director takes nonunifonn orientations parallel to tire plates. In thicker films of nematics, textures of dark flexible filaments are observed, whetlier in polarized light or not. This texture, in fact, gave rise to tire tenn nematic (from tire Greek for tliread ) [40]. The director fields... [Pg.2551]

An aligned monodomain of a nematic liquid crystal is characterized by a single director n. However, in imperfectly aligned or unaligned samples the director varies tlirough space. The appropriate tensor order parameter to describe the director field is then... [Pg.2557]

Figure C2.2.11. (a) Splay, (b) twist and (c) bend defonnations in a nematic liquid crystal. The director is indicated by a dot, when nonnal to the page. The corresponding Frank elastic constants are indicated (equation(C2.2.9)). Figure C2.2.11. (a) Splay, (b) twist and (c) bend defonnations in a nematic liquid crystal. The director is indicated by a dot, when nonnal to the page. The corresponding Frank elastic constants are indicated (equation(C2.2.9)).
Continuum theory has also been applied to analyse tire dynamics of flow of nematics [77, 80, 81 and 82]. The equations provide tire time-dependent velocity, director and pressure fields. These can be detennined from equations for tire fluid acceleration (in tenns of tire total stress tensor split into reversible and viscous parts), tire rate of change of director in tenns of tire velocity gradients and tire molecular field and tire incompressibility condition [20]. [Pg.2558]

C and I account for gradients of the smectic order parameter the fifth tenn also allows for director fluctuations, n. The tenn is the elastic free-energy density of the nematic phase, given by equation (02.2.9). In the smectic... [Pg.2559]

AH distortions of the nematic phase may be decomposed into three basic curvatures of the director, as depicted in Figure 6. Liquid crystals are unusual fluids in that such elastic curvatures may be sustained. Molecules of a tme Hquid would immediately reorient to flow out of an imposed mechanical shear. The force constants characterizing these distortions are very weak, making the material exceedingly sensitive and easy to perturb. [Pg.192]

Chira.lNema.tlc, If the molecules of a Hquid crystal are opticaHy active (chiral), then the nematic phase is not formed. Instead of the director being locaHy constant as is the case for nematics, the director rotates in heHcal fashion throughout the sample. This chiral nematic phase is shown in Figure 7, where it can be seen that within any plane perpendicular to the heHcal axis the order is nematic-like. In other words, as in a nematic there is only orientational order in chiral nematic Hquid crystals, and no positional order. Keep in mind, however, that there are no planes of any sort in a chiral nematic Hquid crystal, since the director rotates continuously about the heHcal axis. The pitch of the helix formed by the director, ie, the distance it takes for the... [Pg.192]

Fig. 7. The chiral nematic Hquid crystal stmcture. The director (arrow) traces out a heHcal path within the medium. Siace the rotation of the director is continuous, the figure does not mean to imply the existence of layers perpendicular to the heHcal axis. Fig. 7. The chiral nematic Hquid crystal stmcture. The director (arrow) traces out a heHcal path within the medium. Siace the rotation of the director is continuous, the figure does not mean to imply the existence of layers perpendicular to the heHcal axis.
Chiral nematic Hquid crystals are sometimes referred to as spontaneously twisted nematics, and hence a special case of the nematic phase. The essential requirement for the chiral nematic stmcture is a chiral center that acts to bias the director of the Hquid crystal with a spontaneous cumulative twist. An ordinary nematic Hquid crystal can be converted into a chiral nematic by adding an optically active compound (4). In many cases the inverse of the pitch is directiy proportional to the molar concentration of the optically active compound. Racemic mixtures (1 1 mixtures of both isomers) of optically active mesogens form nematic rather than chiral nematic phases. Because of their twist encumbrance, chiral nematic Hquid crystals generally are more viscous than nematics (6). [Pg.193]

Chiral Smectic. In much the same way as a chiral compound forms the chiral nematic phase instead of the nematic phase, a compound with a chiral center forms a chiral smectic C phase rather than a smectic C phase. In a chiral smectic CHquid crystal, the angle the director is tilted away from the normal to the layers is constant, but the direction of the tilt rotates around the layer normal in going from one layer to the next. This is shown in Figure 10. The distance over which the director rotates completely around the layer normal is called the pitch, and can be as small as 250 nm and as large as desired. If the molecule contains a permanent dipole moment transverse to the long molecular axis, then the chiral smectic phase is ferroelectric. Therefore a device utilizing this phase can be intrinsically bistable, paving the way for important appHcations. [Pg.194]

A similar effect occurs in highly chiral nematic Hquid crystals. In a narrow temperature range (seldom wider than 1°C) between the chiral nematic phase and the isotropic Hquid phase, up to three phases are stable in which a cubic lattice of defects (where the director is not defined) exist in a compHcated, orientationaHy ordered twisted stmcture (11). Again, the introduction of these defects allows the bulk of the Hquid crystal to adopt a chiral stmcture which is energetically more favorable than both the chiral nematic and isotropic phases. The distance between defects is hundreds of nanometers, so these phases reflect light just as crystals reflect x-rays. They are called the blue phases because the first phases of this type observed reflected light in the blue part of the spectmm. The arrangement of defects possesses body-centered cubic symmetry for one blue phase, simple cubic symmetry for another blue phase, and seems to be amorphous for a third blue phase. [Pg.194]

If the molecules are chiral or if a chiral dopant is added to a discotic Hquid crystal, a chiral nematic discotic phase can form. The director configuration ia this phase is just like the director configuration ia the chiral nematic phase formed by elongated molecules (12). Recendy, discotic blue phases have been observed. [Pg.196]

This supertwisted nematic display utilizes a twist of the Hquid crystal director of 270° within the ceU rather than 90° (45). The basic operation of the ceU is unchanged ia that the effect of the analyzer on light which has been rotated by 270° is the same as for 90° rotation. [Pg.203]

FIG. 13 A colloidal liquid crystal. The rod-like particles point to a preferred diree-tion, called the nematic director. The solvent is disordered. [Pg.763]

Fig. 28. Room temperature 2H NMR spectra of the smectic liquid crystalline polymer (m = 6), oriented in its nematic phase by the magnetic field (8.5 T) of the NMR spectrometer with director ii parallel (left) and perpendicular (right) to the magnetic field... Fig. 28. Room temperature 2H NMR spectra of the smectic liquid crystalline polymer (m = 6), oriented in its nematic phase by the magnetic field (8.5 T) of the NMR spectrometer with director ii parallel (left) and perpendicular (right) to the magnetic field...
Other more exotic types of calamitic liquid crystal molecules include those having chiral components. This molecular modification leads to the formation of chiral nematic phases in which the director adopts a natural helical twist which may range from sub-micron to macroscopic length scales. Chirality coupled with smectic ordering may also lead to the formation of ferroelectric phases [20]. [Pg.7]

Another example of the coupling between microscopic and macroscopic properties is the flexo-electric effect in liquid crystals [33] which was first predicted theoretically by Meyer [34] and later observed in MBBA [35], Here orientational deformations of the director give rise to spontaneous polarisation. In nematic materials, the induced polarisation is given by... [Pg.10]


See other pages where Directors nematics is mentioned: [Pg.166]    [Pg.166]    [Pg.2544]    [Pg.2553]    [Pg.2553]    [Pg.2557]    [Pg.2561]    [Pg.2561]    [Pg.2562]    [Pg.2562]    [Pg.2564]    [Pg.191]    [Pg.192]    [Pg.193]    [Pg.193]    [Pg.193]    [Pg.195]    [Pg.198]    [Pg.203]    [Pg.204]    [Pg.29]    [Pg.762]    [Pg.97]    [Pg.274]    [Pg.14]    [Pg.51]    [Pg.56]    [Pg.75]    [Pg.96]    [Pg.101]    [Pg.105]    [Pg.108]   
See also in sourсe #XX -- [ Pg.2 , Pg.26 , Pg.171 ]

See also in sourсe #XX -- [ Pg.2 , Pg.26 , Pg.171 ]




SEARCH



Bend director distortions, nematics

Director

Director chiral nematics

Director distortions, nematics

Director gradients, nematics

Director helix, chiral nematics

Director nematic-like

Directors biaxial nematics

Discotic, nematics director

Electrohydrodynamic Instability in Nematics with Oblique Director Orientation at the Boundaries

Nematic director

Nematic director

Nematic liquid crystal director orientations

Nematic liquid crystals director alignment

Nematic-phase director

Splay director distortions, nematics

Twist director distortions, nematics

© 2024 chempedia.info