Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extraction index

Fig. 10 relates the composite extraction index (see above) obtained in the low-shear aqueous test system for these Tween surfactants, and adhesion tensions measured against various solids. Adhesion tensions against platinum and bitumen saturated pyrophyllite are irregularly related to tar sand extraction, while the adhesion tension against a fresh pyrophyllite surface is linearly (inversely) related to tar sand extraction. This is the first linear correlation between a measurable property of a surfactant solution and tar sand extraction which we have been able to obtain, and there appears to be no such finding in the literature. Fig. 11 gives the relations between extraction of bitumen with the paddle mill, solvent-aqueous-surfactant extraction and adhesion tensions measured against platinum, bitumen saturated pyrophyllite and hydrated (48 hours in water) pyrophyllite. [Pg.73]

Figure 10, Aqueous-surfactant extraction of tar sand (composite extraction index) vs, adhesion tension against various solids for Tween surfactants (0.02% w/v). Symbols as in Figure 8. Figure 10, Aqueous-surfactant extraction of tar sand (composite extraction index) vs, adhesion tension against various solids for Tween surfactants (0.02% w/v). Symbols as in Figure 8.
The fundamental step in all analytical studies on lipids and hpid metabolites begins with extraction methods. Two papers, Eolch et al. (37) and Bhgh and Dyer (38), are routinely cited methods describing hpid extraction and should be consulted as general guides. Details of these methods can be found in the Lipid Library http //www.lipidlibrary.co.uk/topics/extract/index.htm) and in Cyberlipids (http //www.cyberlipidorg/extract/ extr0002.htm). [Pg.888]

Polar aliphatic plasticizers mis less well with polymers than do polar aromatics and, consequently, may exude (bloom) from the plasticized polymer more easily. Their polymer miscibility temperature is higher than that for the first group. These plasticizers are called oil-type plasticizers, and their kerosene extraction index is high. Their plasticization action is, however, more pronounced than that of polar aromatic plasticizers at the same molar concentration. Moreover, since the aliphatic portions of the molecules retain their flexibility over a large temperature range, these plasticizers give a better elasticity to finished products at low temperature, as compared to polar aromatic plasticizers, and allow the production of better cold-resistant materials. In PVC they also cause less coloration under heat exposure. [Pg.133]

Extraction index (El), the ratio between H2 permeated through the membrane with respect to that totally fed to the reactor. [Pg.100]

In MR technology, the quantification of H2 recovered with respect to that totally extractable in the feed is an important issue. The extraction index (eqn (12.5)) defined as the ratio between H2 permeated through the membrane with respect to that totally fed to the reactor, gives an indication about the limitations of an MR in the achievement of a complete conversion. If the hydrogen is the permeating species, as in the case study considered, El takes into account... [Pg.105]

Two further examples of type I ternary systems are shown in Figure 19 which presents calculated and observed selectivities. For successful extraction, selectivity is often a more important index than the distribution coefficient. Calculations are shown for the case where binary data alone are used and where binary data are used together with a single ternary tie line. It is evident that calculated selectivities are substantially improved by including limited ternary tie-line data in data reduction. [Pg.71]

The PE data was obtained by repeating the scanning of the object, now measuring the received echo at Transducer 1. For every position, (x, y), an A-scan was obtained from which we extracted the back wall echo by means of a time gate. This back wall echo is denoted s(x, y). Note that s x, y) is a time signal that can be written s(f, x, y) where t is the time index. One example of such a back wall echo is shown in Figure 2. [Pg.889]

The systematic lUPAC nomenclature of compounds tries to characterize compounds by a unique name. The names are quite often not as compact as the trivial names, which are short and simple to memorize. In fact, the lUPAC name can be quite long and cumbersome. This is one reason why trivial names are still heavily used today. The basic aim of the lUPAC nomenclature is to describe particular parts of the structure (fi agments) in a systematic manner, with special expressions from a vocabulary of terms. Therefore, the systematic nomenclature can be, and is, used in database systems such as the Chemical Abstracts Service (see Section 5.4) as index for chemical structures. However, this notation does not directly allow the extraction of additional information about the molecule, such as bond orders or molecular weight. [Pg.21]

Salt extraction Salt flotation Salt index... [Pg.867]

Source sampling of particulates requites isokinetic removal of a composite sample from the stack or vent effluent to determine representative emission rates. Samples are coUected either extractively or using an in-stack filter EPA Method 5 is representative of extractive sampling, EPA Method 17 of in-stack filtration. Other means of source sampling have been used, but they have been largely supplanted by EPA methods. Continuous in-stack monitors of opacity utilize attenuation of radiation across the effluent. Opacity measurements are affected by the particle size, shape, size distribution, refractive index, and the wavelength of the radiation (25,26). [Pg.384]

Fig. 3. (a) Flame ionization detector (fid) response to an extract of commercially processed Valencia orange juice, (b) Gas chromatography—olfactometry (geo) chromatogram of the same extract. The abscissa in both chromatograms is a normal paraffin retention index scale ranging between hexane and octadecane (Kovats index). Dilution value in the geo is the -fold that the extract had to be diluted until odor was no longer detectable at each index. [Pg.6]

Lubricants. Petroleum lubricants continue to be the mainstay for automotive, industrial, and process lubricants. Synthetic oils are used extensively in industry and for jet engines they, of course, are made from hydrocarbons. Since the viscosity index (a measure of the viscosity behavior of a lubricant with change in temperature) of lube oil fractions from different cmdes may vary from +140 to as low as —300, additional refining steps are needed. To improve the viscosity index (VI), lube oil fractions are subjected to solvent extraction, solvent dewaxing, solvent deasphalting, and hydrogenation. Furthermore, automotive lube oils typically contain about 12—14% additives. These additives maybe oxidation inhibitors to prevent formation of gum and varnish, corrosion inhibitors, or detergent dispersants, and viscosity index improvers. The United States consumption of lubricants is shown in Table 7. [Pg.367]

Chemical Antioxidant Systems. The antioxidant activity of tea extracts and tea polyphenols have been determined using in vitro model systems which are based on hydroxyl-, peroxyl-, superoxide-, hydrogen peroxide-, and oxygen-induced oxidation reactions (109—113). The effectiveness of purified tea polyphenols and cmde tea extracts as antioxidants against the autoxidation of fats has been studied using the standard Rancimat system, an assay based on air oxidation of fats or oils. A direct correlation between the antioxidant index of a tea extract and the concentration of epigallocatechin gallate in the extract was found (107). [Pg.373]

Strkcttire inflkence. The specificity of interphase transfer in the micellar-extraction systems is the independent and cooperative influence of the substrate molecular structure - the first-order molecular connectivity indexes) and hydrophobicity (log P - the distribution coefficient value in the water-octanole system) on its distribution between the water and the surfactant-rich phases. The possibility of substrates distribution and their D-values prediction in the cloud point extraction systems using regressions, which consider the log P and values was shown. Here the specificity of the micellar extraction is determined by the appearance of the host-guest phenomenon at molecular level and the high level of stmctural organization of the micellar phase itself. [Pg.268]

On the basis of data obtained the possibility of substrates distribution and their D-values prediction using the regressions which consider the hydrophobicity and stmcture of amines was investigated. The hydrophobicity of amines was estimated by the distribution coefficient value in the water-octanole system (Ig P). The molecular structure of aromatic amines was characterized by the first-order molecular connectivity indexes ( x)- H was shown the independent and cooperative influence of the Ig P and parameters of amines on their distribution. Evidently, this fact demonstrates the host-guest phenomenon which is inherent to the organized media. The obtained in the research data were used for optimization of the conditions of micellar-extraction preconcentrating of metal ions with amines into the NS-rich phase with the following determination by atomic-absorption method. [Pg.276]

For thin-film samples, abrupt changes in refractive indices at interfrees give rise to several complicated multiple reflection effects. Baselines become distorted into complex, sinusoidal, fringing patterns, and the intensities of absorption bands can be distorted by multiple reflections of the probe beam. These artifacts are difficult to model realistically and at present are probably the greatest limiters for quantitative work in thin films. Note, however, that these interferences are functions of the complex refractive index, thickness, and morphology of the layers. Thus, properly analyzed, useful information beyond that of chemical bonding potentially may be extracted from the FTIR speara. [Pg.425]

Specific gravity at 2J C Refractive index Efficiency proportions Cold flex lemp.(°C) Volatility Water extraction (%)" hO OCtane extraction (%r ... [Pg.332]

Bromine (128 g., 0.80 mole) is added dropwise to the well-stirred mixture over a period of 40 minutes (Note 4). After all the bromine has been added, the molten mixture is stirred at 80-85° on a steam bath for 1 hour, or until it solidifies if that happens first (Note 5). The complex is added in portions to a well-stirred mixture of 1.3 1. of cracked ice and 100 ml. of concentrated hydrochloric acid in a 2-1. beaker (Note 6). Part of the cold aqueous layer is added to the reaction flask to decompose whatever part of the reaction mixture remains there, and the resulting mixture is added to the beaker. The dark oil that settles out is extracted from the mixture with four 150-ml. portions of ether. The extracts are combined, washed consecutively with 100 ml. of water and 100 ml. of 5% aqueous sodium bicarbonate solution, dried with anhydrous sodium sulfate, and transferred to a short-necked distillation flask. The ether is removed by distillation at atmospheric pressure, and crude 3-bromo-acetophenone is stripped from a few grams of heavy dark residue by distillation at reduced pressure. The colorless distillate is carefully fractionated in a column 20 cm. long and 1.5 cm. in diameter that is filled with Carborundum or Heli-Pak filling. 4 hc combined middle fractions of constant refractive index are taken as 3-l)romoaccto])lu iu)nc weight, 94 -100 g. (70-75%) l).p. 75 76°/0.5 mm. tif 1.57,38 1.5742 m.]). 7 8° (Notes 7 and 8). [Pg.8]


See other pages where Extraction index is mentioned: [Pg.443]    [Pg.204]    [Pg.106]    [Pg.23]    [Pg.443]    [Pg.204]    [Pg.106]    [Pg.23]    [Pg.277]    [Pg.1189]    [Pg.179]    [Pg.101]    [Pg.101]    [Pg.252]    [Pg.116]    [Pg.116]    [Pg.119]    [Pg.237]    [Pg.46]    [Pg.220]    [Pg.388]    [Pg.458]    [Pg.274]    [Pg.318]    [Pg.318]    [Pg.229]   
See also in sourсe #XX -- [ Pg.100 ]

See also in sourсe #XX -- [ Pg.100 ]




SEARCH



Extractable soils 848 INDEX

Extraction equipment INDEX

Kerosene extraction index

Phenol index with 4-aminoantipyrine without extraction after steam distillation

Solid-phase extraction INDEX

Solvent Extraction - Viscosity Index Control

© 2024 chempedia.info