Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extraction, advantages efficiency

TBP has the advantage of being able to extract uranium efficiently from nitric acid solution without addition of solid nitrates. TBP is also used to purify natural uranium (Sec. 9.2 of this chapter). [Pg.231]

The main advantages offered by gas exhausters over alternative solutions are excellent noncondensable gas extraction process efficiency and the high levels of... [Pg.298]

Relational database models utilize memory very efficiently, avoiding repetition of data. It is possible to extract both individual data elements and combinations of them from a table. The main advantage of this structure is that it offers the possibility ofehanging the structure of the database (adding or deleting tables) without... [Pg.235]

One more variation to the many methods proposed for sulfur extraction is the fire-flood method. It is a modem version of the Sickian method, by which a portion of the sulfur is burned to melt the remainder. It would be done in situ and is said to offer cost advantages, to work in almost any type of zone formation, and to produce better sweep efficiency than other systems. The recovery stream would be about 20 wt % sulfur as SO2 and 80 wt % elemental sulfur. The method was laboratory-tested in the late 1960s and patents were issued. However, it was not commercially exploited because sulfur prices dropped. [Pg.119]

The major advantage of the use of two-phase catalysis is the easy separation of the catalyst and product phases. FFowever, the co-miscibility of the product and catalyst phases can be problematic. An example is given by the biphasic aqueous hydro-formylation of ethene to propanal. Firstly, the propanal formed contains water, which has to be removed by distillation. This is difficult, due to formation of azeotropic mixtures. Secondly, a significant proportion of the rhodium catalyst is extracted from the reactor with the products, which prevents its efficient recovery. Nevertheless, the reaction of ethene itself in the water-based Rh-TPPTS system is fast. It is the high solubility of water in the propanal that prevents the application of the aqueous biphasic process [5]. [Pg.259]

Jacobsen subsequently reported a practical and efficient method for promoting the highly enantioselective addition of TMSN3 to meso-epoxides (Scheme 7.3) [4]. The chiral (salen)Cl-Cl catalyst 2 is available commercially and is bench-stable. Other practical advantages of the system include the mild reaction conditions, tolerance of some Lewis basic functional groups, catalyst recyclability (up to 10 times at 1 mol% with no loss in activity or enantioselectivity), and amenability to use under solvent-free conditions. Song later demonstrated that the reaction could be performed in room temperature ionic liquids, such as l-butyl-3-methylimidazo-lium salts. Extraction of the product mixture with hexane allowed catalyst recycling and product isolation without recourse to distillation (Scheme 7.4) [5]. [Pg.230]

Owing to the weak hydrophobicity of the PEO stationary phases and reversibility of the protein adsorption, some advantages of these columns could be expected for the isolation of labile and high-molecular weight biopolymers. Miller et al. [61] found that labile mitochondrial matrix enzymes — ornitine trans-carbomoylase and carbomoyl phosphate synthetase (M = 165 kDa) could be efficiently isolated by means of hydrophobic interaction chromatography from the crude extract. [Pg.159]

Supercritical fluid extraction — During the past two decades, important progress was registered in the extraction of bioactive phytochemicals from plant or food matrices. Most of the work in this area focused on non-polar compounds (terpenoid flavors, hydrocarbons, carotenes) where a supercritical (SFE) method with CO2 offered high extraction efficiencies. Co-solvent systems combining CO2 with one or more modifiers extended the utility of the SFE-CO2 system to polar and even ionic compounds, e.g., supercritical water to extract polar compounds. This last technique claims the additional advantage of combining extraction and destruction of contaminants via the supercritical water oxidation process."... [Pg.310]

Synthesis of metal carbonyl clusters on oxide surfaces (followed by extraction into a solvent and workup) is occasionally a more convenient and efficient method for preparation of a metal carbonyl cluster than conventional solution chemistry. This synthetic strategy offers the green chemistry advantage of minimizing solvent use, as the reaction often occurs in the absence of solvent. [Pg.214]

If the analyte contains either an acidic or a basic functionality, adjusting the pH of the extraction solvent to make the analyte either ionic or nonionic may be advantageous. To make an analyte that contains an acidic or basic functionality nonionic for extraction into a nonpolar solvent, a small amount (5% or less) of an organic acid (such as acetic acid or trifluoroacetic acid) or organic base (triethylamine) along with methanol (about 10%) can be added to diethyl ether or ethyl acetate. Conversely, buffered solutions can be used to control the pH precisely in such a way as to control the charge on an analyte and thus improve its extraction efficiency into polar solvents. [Pg.305]

A technique that attempts to combine the extraction and SPE into a single step is matrix solid-phase dispersion (MSPD). In this technique, a nonpolar (such as Cig) SPE sorbent is blended directly into tissue matrix, the mixture is packaged into an SPE cartridge, and the cartridge is eluted like a typical SPE cartridge. The advantage of MSPD is reduced sample size and increased efficiency due to a reduced number of steps. [Pg.309]

An advantage of the microbore gas chromatrography/time-of-flight mass spectrometry (GC/TOFMS) method over the other two approaches is that separation efficiency need not be compromised for speed of analysis. The rapid deconvolution of spectra ( scan rate ) with TOFMS makes it the only MS approach to achieve several data points across a narrow peak in full-scan operation. However, the injection of complex extracts deteriorates performance of microbore columns quickly, and an increased LOD and decreased ruggedness result. Microbore columns may be used in water analysis if the LOD is sufficiently low, but they can rarely be used in real-life applications to complicated extracts. [Pg.763]


See other pages where Extraction, advantages efficiency is mentioned: [Pg.916]    [Pg.115]    [Pg.187]    [Pg.58]    [Pg.98]    [Pg.222]    [Pg.5]    [Pg.75]    [Pg.125]    [Pg.155]    [Pg.476]    [Pg.115]    [Pg.16]    [Pg.144]    [Pg.58]    [Pg.253]    [Pg.295]    [Pg.353]    [Pg.85]    [Pg.155]    [Pg.181]    [Pg.28]    [Pg.140]    [Pg.172]    [Pg.305]    [Pg.311]    [Pg.367]    [Pg.151]    [Pg.166]    [Pg.303]    [Pg.432]    [Pg.433]    [Pg.756]    [Pg.761]    [Pg.384]    [Pg.396]    [Pg.438]    [Pg.896]    [Pg.901]   
See also in sourсe #XX -- [ Pg.174 ]




SEARCH



Extraction efficiencies

© 2024 chempedia.info