Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biphasic aqueous

Extractions and separations in two-phase systems require knowledge of the miscibilities and immiscibilities of ILs with other solvents compatible with the process. These are most usually IL/aqueous biphase systems in which the IL is the less polar phase and organic/IL systems in which the IL is used as the polar phase. In these two-phase systems, extraction both to and from the IL phase is important. [Pg.69]

The major advantage of the use of two-phase catalysis is the easy separation of the catalyst and product phases. FFowever, the co-miscibility of the product and catalyst phases can be problematic. An example is given by the biphasic aqueous hydro-formylation of ethene to propanal. Firstly, the propanal formed contains water, which has to be removed by distillation. This is difficult, due to formation of azeotropic mixtures. Secondly, a significant proportion of the rhodium catalyst is extracted from the reactor with the products, which prevents its efficient recovery. Nevertheless, the reaction of ethene itself in the water-based Rh-TPPTS system is fast. It is the high solubility of water in the propanal that prevents the application of the aqueous biphasic process [5]. [Pg.259]

When the products are partially or totally miscible in the ionic phase, separation is much more complicated (Table 5.3-2, cases c-e). One advantageous option can be to perform the reaction in one single phase, thus avoiding diffusional limitation, and to separate the products in a further step by extraction. Such technology has already been demonstrated for aqueous biphasic systems. This is the case for the palladium-catalyzed telomerization of butadiene with water, developed by Kuraray, which uses a sulfolane/water mixture as the solvent [17]. The products are soluble in water, which is also the nucleophile. The high-boiling by-products are extracted with a solvent (such as hexane) that is immiscible in the polar phase. This method... [Pg.264]

In the aqueous biphasic hydroformylation reaction, the site of the reaction has been much discussed (and contested) and is dependent on reaction conditions (temperature, partial pressure of gas, stirring, use of additives) and reaction partners (type of alkene) [35, 36]. It has been suggested that the positive effects of cosolvents indicate that the bulk of the aqueous liquid phase is the reaction site. By contrast, the addition of surfactants or other surface- or micelle-active compounds accelerates the reaction, which apparently indicates that the reaction occurs at the interfacial layer. [Pg.270]

In comparison with classical processes involving thermal separation, biphasic techniques offer simplified process schemes and no thermal stress for the organometal-lic catalyst. The concept requires that the catalyst and the product phases separate rapidly, to achieve a practical approach to the recovery and recycling of the catalyst. Thanks to their tunable solubility characteristics, ionic liquids have proven to be good candidates for multiphasic techniques. They extend the applications of aqueous biphasic systems to a broader range of organic hydrophobic substrates and water-sensitive catalysts [48-50]. [Pg.278]

An example of a large scale application of the aqueous biphasic concept is the Ruhrchemie/Rhone-Poulenc process for the hydroformylation of propylene to n-butanal (Eqn. (15)), which employs a water-soluble rhodium(I) complex of trisulphonated triphenylphosphine (tppts) as the catalyst (Cornils and Wiebus, 1996). [Pg.46]

Figure 2.29. Pd/tppt.s-catalysed carbonylations in aqueous biphasic media. Figure 2.29. Pd/tppt.s-catalysed carbonylations in aqueous biphasic media.
However, in the two-phase system described here the reaction progress has an influence on substrate transfer [Eq. (9)] and steady-state changes continually during the evolution of the system. Interaction between the reactant transfer and lipoxygenase-catalyzed reaction is therefore studied in octane-aqueous biphasic medium (modified Lewis cell). [Pg.574]

The present section deals with the improvement in the performance of biocatalysis when carried out in organic-aqueous biphasic systems. Such systems are very useful in equilibrium reactions and conversion yield where substrates and products can be dissolved and drawn into different phases. Subsequently the synthesis in the reactive aqueous phase is allowed to continue. [Pg.575]

Yang and Russell [7] made comparison of lipase-catalyzed hydrolysis in three different systems organic, biphasic, and reversed micelles. They affirmed that water content is an important factor that distinctly affects every system. Their results demonstrated that activity of lipase in organic-aqueous biphasic media was lower than that obtained in reversed micelles. However, better productivities were obtained in biphasic media, which were the most suitable environment. [Pg.576]

Many interesting biocatalytic reactions involve organic components that are poorly water-soluble. When using organic-aqueous biphasic bioreactor, availability of poorly water-soluble reactants to cells and enzymes is improved, and product extraction can be coupled to the bioreaction. Many applications in two-phase media can use the existing standard-type bioreactors, such as stirred-tank, fluidized-bed, and column reactors with minor adjustments. [Pg.579]

As proven in this review and other papers, organic-aqueous biphasic media have been useful in many areas of biocatalysis applications. We summarize the potential advantages in carrying out biocatalysis in biphasic systems ... [Pg.581]

The aqueous biphase hydrogenation of dimethyl itaconate is accomplished with an Ir-(7 )-(7 )-3-benzyl(/>-sulfonate)-2,4-bis(diphenylphosphino)pentane complex.605... [Pg.217]

In the base-assisted reactions, the hydrogenolysis products are recovered as sodium or potassium thiolates which can either be converted to thiols by acidification with protic acids, or be oxidized to disulfides by exposure to air.184,195 In turn, all of the Rh catalyst of the aqueous biphasic reactions remains in the polar phase for use in a further catalytic run after the thiolate product is extracted as thiol. [Pg.104]

These alternative processes can be divided into two main categories, those that involve insoluble (Chapter 3) or soluble (Chapter 4) supports coupled with continuous flow operation or filtration on the macro - nano scale, and those in which the catalyst is immobilised in a separate phase from the product. These chapters are introduced by a discussion of aqueous biphasic systems (Chapter 5), which have already been commercialised. Other chapters then discuss newer approaches involving fluorous solvents (Chapter 6), ionic liquids (Chapter 7) and supercritical fluids (Chapter 8). [Pg.8]

Only the biphasic method, specially of aqueous-biphasic catalysis, has provided a fundamental remedy to the problem of stress-free and economical recovery and recycle of homogeneous oxo catalysts [12]. The fact that the catalyst, which still acts homogeneously, is dissolved in water, thus in a polar solvent, and remains dissolved, enables it to be separated from the nonpolar products without problems and with minimal effort after reaction. [Pg.107]

For aqueous biphasic systems, the "solvent" is water which shows pronounced solvent... [Pg.107]

Aqueous biphasic catalysis is a special case of the two-phase processes of homogeneous catalysis. Despite the academic literature s provocative question "Why water " [18a, 18b], the advantages of water as the second phase and the "liquid support" are numerous. On the one hand, the search for the necessary solubility gap is much easier with water than with various organic-phase liquids (Figure 5.2). Additionally, water has many properties which predestine it as a ideal liquid support in homogeneous catalysis (see T able 5.1)[18c,18d]. [Pg.108]

Water has several anomalous features (e.g., density, being the only nontoxic and liquid "hydride" of the non-metals, melting point varying with pressure, etc.). Of direct importance for the aqueous biphasic process are the physiological (entries 2 and 4 of Table 5.1), economic (1,3,6,9), ecological/safety-related (2,3,4,9), process engineering (1,6,7,9,10,11,12), and chemical and physical properties (1,5,6,8,11,13) of water. The different properties interact and complement each other. Thus water, whose high... [Pg.108]

Figure 5.3. Basic flow-sheets of a) a conventional, homogeneously catalyzed process and b) an aqueous-biphasically, homogeneous catalytic process. 1, Reactor 2 Separators) 3, Catalyst separator 4, Make-up 5, Further purification and processing, Gas recycles) 7, Catalyst recycle 8, Reactant feed 9, Withdrawal of high... Figure 5.3. Basic flow-sheets of a) a conventional, homogeneously catalyzed process and b) an aqueous-biphasically, homogeneous catalytic process. 1, Reactor 2 Separators) 3, Catalyst separator 4, Make-up 5, Further purification and processing, Gas recycles) 7, Catalyst recycle 8, Reactant feed 9, Withdrawal of high...
Quite new ideas for the reactor design of aqueous multiphase fluid/fluid reactions have been reported by researchers from Oxeno. In packed tubular reactors and under unconventional reaction conditions they observed very high space-time yields which increased the rate compared with conventional operation by a factor of 10 due to a combination of mass transfer area and kinetics [29]. Thus the old question of aqueous-biphase hydroformylation "Where does the reaction takes place " - i.e., at the interphase or the bulk of the liquid phase [23,56h] - is again questionable, at least under the conditions (packed tubular reactors, other hydrodynamic conditions, in mini plants, and in the unusual,and costly presence of ethylene glycol) and not in harsh industrial operation. The considerable reduction of the laminar boundary layer in highly loaded packed tubular reactors increases the mass transfer coefficients, thus Oxeno claim the successful hydroformylation of 1-octene [25a,26,29c,49a,49e,58d,58f], The search for a new reactor design may also include operation in microreactors [59]. [Pg.112]

Other Industrially Used Aqueous-biphasic Processes... [Pg.116]

Hydroformylation comprises the state-of-the-art of bulk chemical production via aqueous-biphasic processes. At present five plants produce worldwide some 800,000 tpy of oxo products [1], Another bulk process - the hydrodimerization of butadiene and water, a variant of telomerization - is mn by Kururay with a capacity of 5000 tpy (Equation 5.2 [3 lb,36]). [Pg.116]

Today, the Suzuki cross coupling of aryl halides and arylboronic acids is also carried out in aqueous-biphasic operation starting from chlorinated derivatives instead of their more costly bromo or iodo equivalents (Equation 5.6, [39]). [Pg.117]

A multitude of other reactions are compiled in (Table 5.4,[12m]). A proper choice of ligands and reaction conditions will make many other reactions available via aqueous-biphasic operation. [Pg.118]

TABLE 5.4. Recently described examples for aqueous-biphasically operated reactions... [Pg.119]

With the RCH/RP process, it is possible to hydroformylate propene up to pentenes with satisfying space time yields. On the other hand, heavier aldehydes such as Cio (iso-decanal) or higher from the hydroformylation of nonene(s), decenes, etc. can not be separated from the oxo catalysts by conventional means such as distillation due to thermal instability at the required temperatures and thus especially needs the careful aqueous-biphasic separation technique. There are numerous attempts to overcome the problem of low reactivity of higher alkenes which is due to low miscibility of the alkenes in water [26,27b, 50a,58d]. These proposals can briefly be summarized as ... [Pg.119]

Figure 5.8. Membrane steps as a constituent part of aqueous-biphasic hydroformylation A+B->C+D... Figure 5.8. Membrane steps as a constituent part of aqueous-biphasic hydroformylation A+B->C+D...
Taking all criteria into consideration, aqueous two-phase techniques are very sound methods for homogeneously catalyzed processes such as hydrogenations or hydroformylations. Of the various alternatives to the conventional (and solvent-free) processes most progress in terms of ecological impact and economics has been attained by the aqueous biphasic approach (Figure 5.20). [Pg.134]


See other pages where Biphasic aqueous is mentioned: [Pg.74]    [Pg.78]    [Pg.259]    [Pg.267]    [Pg.267]    [Pg.270]    [Pg.141]    [Pg.564]    [Pg.567]    [Pg.568]    [Pg.100]    [Pg.120]    [Pg.161]    [Pg.1]    [Pg.63]    [Pg.106]    [Pg.108]    [Pg.110]    [Pg.114]    [Pg.134]    [Pg.135]    [Pg.145]   
See also in sourсe #XX -- [ Pg.44 , Pg.395 ]




SEARCH



Biphase

Biphasic

© 2024 chempedia.info