Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exposure routes PBPK models

Route to Route PBPK models have been used for route-to-route extrapolation for specific chemicals and systems, and have been shown to produce accurate predictions in many cases [24], By assuming that the relationship between applied dose and tissue dose of the xenobiotic of interest is the same, regardless of the exposure route, route-to-route extrapolations may be performed by the addition of intake terms to the governing mass balance equations that represent each exposure pathway or mechanism. The uncertainty associated with this approach can arise from the first-pass effect as well as variations in rates and extent of absorption and metabolism from one route to another [25], However, by accounting for these route-specific processes, PBPK models can be used to conduct route-to-route extrapolations [26],... [Pg.44]

The PBPK model development for a chemical is preceded by the definition of the problem, which in toxicology may often be related to the apparent complex nature of toxicity. Examples of such apparent complex toxic responses include nonlinearity in dose-response, sex and species differences in tissue response, differential response of tissues to chemical exposure, qualitatively and/or quantitatively difference responses for the same cumulative dose administered by different routes and scenarios, and so on. In these instances, PBPK modeling studies can be utilized to evaluate the pharmacokinetic basis of the apparent complex nature of toxicity induced by the chemical. One of the values of PBPK modeling, in fact, is that accurate description of target tissue dose often resolves behavior that appears complex at the administered dose level. [Pg.732]

The principal application of PBPK models is in the prediction of the target tissue dose of the toxic parent chemical or its reactive metabolite. Use of the target tissue dose of the toxic moiety of a chemical in risk assessment calculations provides a better basis of relating to the observed toxic effects than the external or exposure concentration of the parent chemical. Because PBPK models facilitate the prediction of target tissue dose for various exposure scenarios, routes, doses, and species, they can help reduce the uncertainty associated with the conventional extrapolation approaches. Direct application of modeling includes... [Pg.732]

Description of the Model. The Corley chloroform PBPK model was based on an earlier PBPK model developed by Ramsey and Andersen (1984) to describe the disposition of styrene exposure in rats, mice, and humans. A schematic representation of the Corley model (taken from Corley et al. 1990) is shown in Figure 2-5 with oral, inhalation, and intraperitoneal routes represented. The dermal route of exposure is not represented in this model however, others have modified the Corley model to include this route of exposure (see below). Liver and kidney are represented as separate compartments since both are target organs for chloroform. [Pg.129]

Description of the Model. The McKone (1993) PBPK model addressed potential exposure to chloroform by the inhalation and dermal routes. McKone revised existing shower-compartment, dermal uptake and PBPK models to produce a revised PBPK model for simulating chloroform breath levels in persons exposed in showers by the inhalation route only and by the inhalation and dermal routes combined. Parameters used by this model were taken primarily from two main sources, Jo et al. (1990a) and Corley et al. (1990). [Pg.137]

Many laboratory animal models have been used to describe the toxicity and pharmacology of chloroform. By far, the most commonly used laboratory animal species are the rat and mouse models. Generally, the pharmacokinetic and toxicokinetic data gathered from rats and mice compare favorably with the limited information available from human studies. PBPK models have been developed using pharmacokinetic and toxicokinetic data for use in risk assessment work for the human. The models are discussed in depth in Section 2.3.5. As mentioned previously, male mice have a sex-related tendency to develop severe renal disease when exposed to chloroform, particularly by the inhalation and oral exposure routes. This effect appears to be species-related as well, since experiments in rabbits and guinea pigs found no sex-related differences in renal toxicity. [Pg.142]

Comparative Toxicokinetics. No studies were located in which toxicokinetics of chlorine dioxide or chlorite were examined in humans. Chlorine dioxide is used as a drinking water disinfectant and readily forms chlorite (CIO2 ) in aqueous environments. Therefore, humans would be most likely to encounter chlorine dioxide or chlorite via the oral exposure route. Currently, available toxicokinetic information is restricted to animal studies. Additional studies could be designed to examine toxicokinetics in humans orally exposed to chlorine dioxide or chlorite. Results of human and animal studies could then provide a basis for development of PBPK models for species extrapolation. [Pg.85]

Once a chemical is in systemic circulation, the next concern is how rapidly it is cleared from the body. Under the assumption of steady-state exposure, the clearance rate drives the steady-state concentration in the blood and other tissues, which in turn will help determine what types of specific molecular activity can be expected. Chemicals are processed through the liver, where a variety of biotransformation reactions occur, for instance, making the chemical more water soluble or tagging it for active transport. The chemical can then be actively or passively partitioned for excretion based largely on the physicochemical properties of the parent compound and the resulting metabolites. Whole animal pharmacokinetic studies can be carried out to determine partitioning, metabolic fate, and routes and extent of excretion, but these studies are extremely laborious and expensive, and are often difficult to extrapolate to humans. To complement these studies, and in some cases to replace them, physiologically based pharmacokinetic (PBPK) models can be constructed [32, 33]. These are typically compartment-based models that are parameterized for particular... [Pg.25]

The explanation of the pharmacokinetics or toxicokinetics involved in absorption, distribution, and elimination processes is a highly specialized branch of toxicology, and is beyond the scope of this chapter. However, here we introduce a few basic concepts that are related to the several transport rate processes that we described earlier in this chapter. Toxicokinetics is an extension of pharmacokinetics in that these studies are conducted at higher doses than pharmacokinetic studies and the principles of pharmacokinetics are applied to xenobiotics. In addition these studies are essential to provide information on the fate of the xenobiotic following exposure by a define route. This information is essential if one is to adequately interpret the dose-response relationship in the risk assessment process. In recent years these toxicokinetic data from laboratory animals have started to be utilized in physiologically based pharmacokinetic (PBPK) models to help extrapolations to low-dose exposures in humans. The ultimate aim in all of these analyses is to provide an estimate of tissue concentrations at the target site associated with the toxicity. [Pg.105]

Physiologically based pharmacokinetic (PBPK) models are used to estimate the dose of toxic metabolites reaching target tissues. Model outputs provide internal dose estimates for specific life stages and differences between sexes, species, dose routes, and exposure patterns. These models provide a tool for understanding the... [Pg.137]

Comparative Toxicokinetics. Qualitatively, absorption, distribution, metabolism, and excretion appear to be similar in humans and laboratory animals. However, quantitative variations in the absorption, distribution, metabolism, and excretion of benzene have been observed with respect to exposure routes, sex, nutritional status, and species. Further studies that focus on these differences and their implications for human health would be useful. Additionally, in vitro studies using human tissue and further research into PBPK modeling in animals would contribute significantly to the understanding of the kinetics of benzene and would aid in the development of pharmacokinetic models of exposure in humans. These topics are being addressed in ongoing studies (see Section 2.10.3). [Pg.266]


See other pages where Exposure routes PBPK models is mentioned: [Pg.571]    [Pg.577]    [Pg.98]    [Pg.121]    [Pg.73]    [Pg.73]    [Pg.87]    [Pg.352]    [Pg.130]    [Pg.107]    [Pg.160]    [Pg.162]    [Pg.168]    [Pg.732]    [Pg.80]    [Pg.105]    [Pg.124]    [Pg.128]    [Pg.63]    [Pg.113]    [Pg.107]    [Pg.235]    [Pg.68]    [Pg.110]    [Pg.90]    [Pg.217]    [Pg.432]    [Pg.190]    [Pg.304]    [Pg.307]    [Pg.117]    [Pg.233]    [Pg.128]    [Pg.185]    [Pg.53]    [Pg.67]    [Pg.791]    [Pg.793]   
See also in sourсe #XX -- [ Pg.791 ]




SEARCH



Exposure model

Exposure routes

PBPK

PBPK modeling

PBPK models

PBPKs

© 2024 chempedia.info