Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transport and rate processes

Demirel, Y., 2002, Nonequilibrium Thermodynamics Transport and Rate Processes in Physical and Biological Systems, Elsevier, Amsterdam, pp. 186-205. [Pg.149]

States away from global equilibrium are called the thermodynamic branch (Figure 2.2). Systems not far from global equilibrium may be extrapolated around equilibrium state. For systems near equilibrium, linear phenomenological equations may represent the transport and rate processes. The linear nonequilibrium thermodynamics theory determines the dissipation function or the rate of entropy production to describe such systems in the vicinity of equilibrium. This theory is particularly useful to describe coupled phenomena, and quantify the level of coupling in physical, chemical, and biological systems without detailed process mechanisms. [Pg.54]

If a system is not far from global equilibrium, linear phenomenological equations represent the transport and rate processes involving small thermodynamic driving forces. Consider a simple transport process of heat conduction. The rate of entropy production is... [Pg.142]

The evolution of the variables Xt is influenced by the variation of some control parameters represented by n that can be modified by the environment. The control parameters may be the diffusion coefficient, thermal conductivity, chemical rate constants, or initial and final concentrations of reactants and products. Stability analysis has to consider a variety of variables characterizing problems of transport and rate processes. The variables often are functions of time and space. The function f has the following properties ... [Pg.614]

Extended nonequilibrium thermodynamics is not based on the local equilibrium hypothesis, and uses the conserved variables and nonconserved dissipative fluxes as the independent variables to establish evolution equations for the dissipative fluxes satisfying the second law of thermodynamics. For conservation laws in hydrodynamic systems, the independent variables are the mass density, p, velocity, v, and specific internal energy, u, while the nonconserved variables are the heat flux, shear and bulk viscous pressure, diffusion flux, and electrical flux. For the generalized entropy with the properties of additivity and convex function considered, extended nonequilibrium thermodynamics formulations provide a more complete formulation of transport and rate processes beyond local equilibrium. The formulations can relate microscopic phenomena to a macroscopic thermodynamic interpretation by deriving the generalized transport laws expressed in terms of the generalized frequency and wave-vector-dependent transport coefficients. [Pg.681]

Transport and Rate Processes in Physical, Chemical and Biological Systems... [Pg.731]

Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems. -2nd ed. [Pg.735]

The theory treating near-equilibrium phenomena is called the linear nonequilibrium thermodynamics. It is based on the local equilibrium assumption in the system and phenomenological equations that linearly relate forces and flows of the processes of interest. Application of classical thermodynamics to nonequilibrium systems is valid for systems not too far from equilibrium. This condition does not prove excessively restrictive as many systems and phenomena can be found within the vicinity of equilibrium. Therefore equations for property changes between equilibrium states, such as the Gibbs relationship, can be utilized to express the entropy generation in nonequilibrium systems in terms of variables that are used in the transport and rate processes. The second law analysis determines the thermodynamic optimality of a physical process by determining the rate of entropy generation due to the irreversible process in the system for a required task. [Pg.750]

This book introduces the theory of nonequilibrium thermodynamics and its use in transport and rate processes of physical and biological systems. The first chapter briefly presents the equilibrium thermodynamics. In the second chapter, the transport and rate processes have been summarized. The rest of the book covers the theory of nonequilibrium thermodynamics, dissipation function, and various applications based on linear nonequilibrium thermodynamics. Extended nonequilibrium thermodynamics is briefly covered. All the parts of the book can be used for senior- and graduate-level teaching in engineering and science. [Pg.750]


See other pages where Transport and rate processes is mentioned: [Pg.53]    [Pg.54]    [Pg.56]    [Pg.58]    [Pg.60]    [Pg.62]    [Pg.64]    [Pg.66]    [Pg.68]    [Pg.70]    [Pg.72]    [Pg.74]    [Pg.76]    [Pg.78]    [Pg.80]    [Pg.82]    [Pg.84]    [Pg.86]    [Pg.88]    [Pg.90]    [Pg.92]    [Pg.94]    [Pg.96]    [Pg.97]    [Pg.125]    [Pg.453]    [Pg.599]    [Pg.732]    [Pg.734]    [Pg.748]    [Pg.750]    [Pg.75]    [Pg.76]   


SEARCH



Processing rate

Rate processes

Transport processes

Transport rates

Transportation processes

© 2024 chempedia.info