Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene, properties

Ethene (ethylene) Properties, Production Uses." Aus e tute. http //www.ausetute.com.au/ethene.html (accessed on December 27, 2005). [Pg.311]

CH3 CH0H CH20H, a colourless, almost odourless liquid. It has a sweet taste, but is more acrid than ethylene glycol b.p. 187. Manufactured by heating propylene chlorohydrin with a solution of NaHCO under pressure. It closely resembles dihydroxyethane in its properties, but is less toxic. Forms mono-and di-esters and ethers. Used as an anti-freeze and in the preparation of perfumes and flavouring extracts, as a solvent and in... [Pg.139]

CH3CHCICH2CI. Colourless liquid with a pleasant odour b.p. 96 C, Manufactured by treating liquid chlorine with an excess of liquid propene. It is very similar in properties to ethylene dichloride, and is used for similar purposes. [Pg.330]

The classic example is the butadiene system, which can rearrange photochemi-cally to either cyclobutene or bicyclobutane. The spin pairing diagrams are shown in Figure 13. The stereochemical properties of this reaction were discussed in Section III (see Fig. 8). A related reaction is the addition of two ethylene derivatives to form cyclobutanes. In this system, there are also three possible spin pairing options. [Pg.349]

Homologous mono-alkyl ethers of ethylene glycol, such as monoethyl glycol (or 2-ethoxyethanol), HOC2H4OC2H5, form excellent solvents as they combine to a large extent the solvent properties of alcohols and ethers. The monoethyl and the monomethyl members have the technical names of ethyl cellosolve and methyl cellosolve respectively. Dioxan... [Pg.15]

It is a property of linear, homogeneous differential equations, of which the Schroedinger equation is one. that a solution multiplied by a constant is a solution and a solution added to or subtracted from a solution is also a solution. If the solutions Pi and p2 in Eq. set (6-13) were exact molecular orbitals, id v would also be exact. Orbitals p[ and p2 are not exact molecular orbitals they are exact atomic orbitals therefore. j is not exact for the ethylene molecule. [Pg.177]

There are no liquid alkynes whieh can be conveniently prepared by the elementary student. Some of the properties of aeetylenie hydrocarbons may be studied with the gas, aeetylene. Although the latter may be prepared in moderate 3deld by the addition of ethylene dibromide to a boiling aleoholic solution of potassium hydroxide or of sodium ethoxide,... [Pg.245]

The monoalkyl ethers with R = CHj, CjHj and C4H, , known respectively as methyl ceUoaolve, ceUosolve and hutyl cellosolve, are of great commercial value, particularly as solvents, since they combine the properties of alcohols and ethers and are miscible with water. Equally important compounds are the carbitols (monoalkyl ethers of diethyleneglycol) prepared by the action of ethylene oxide upon the monoethers of ethylene glycol ... [Pg.444]

Ethylene. Under the influence of pressure and a catalyst, ethylene yields a white, tough but flexible waxy sohd, known as Polythene. Polyethylene possesses excellent electric insulation properties and high water resistance it has a low specific gravity and a low softening point (about 110°). The chemical inertness oi Polythene has found application in the manufacture of many items of apparatus for the laboratory. It is a useful lubricant for ground glass connexions, particularly at relatively high temperatures. [Pg.1015]

Polyamides from diamines and dibasic acids. The polyamides formed from abphatic diamines (ethylene- to decamethylene-diamine) and abphatic dibasic acids (oxabc to sebacic acid) possess the unusual property of forming strong fibres. By suitable treatment, the fibres may be obtained quite elastic and tough, and retain a high wet strength. These prpperties render them important from the commercial point of view polyamides of this type are cabed nylons The Nylon of commerce (a 66 Nylon, named after number of carbon atoms in the two components) is prepared by heating adipic acid and hexamethylenediamine in an autoclave ... [Pg.1019]

Polysulphide rubbers. Ethylene dichloride and excess of sodium tetrasulphide when heated together give a polymeric polysulphide, Thiokol A, with properties resembling those of rubber ... [Pg.1021]

Prepare a saturated solution of sodium sulphide, preferably from the fused technical sodium polysulphide, and saturate it with sulphur the sulphur content should approximate to that of sodium tetrasulphide. To 50 ml. of the saturated sodium tetrasulphide solution contained in a 500 ml. round-bottomed flask provided with a reflux condenser, add 12 -5 ml. of ethylene dichloride, followed by 1 g. of magnesium oxide to act as catalyst. Heat the mixture until the ethylene dichloride commences to reflux and remove the flame. An exothermic reaction sets in and small particles of Thiokol are formed at the interface between the tetrasulphide solution and the ethylene chloride these float to the surface, agglomerate, and then sink to the bottom of the flask. Decant the hquid, and wash the sohd several times with water. Remove the Thiokol with forceps or tongs and test its rubber-like properties (stretching, etc.). [Pg.1024]

In addition to inorganic radicals, which profoundly modify the properties of a paraflSn hydrocarbon residue, there is a whole series of organic groupings which are distinguished by exceptional reactivity, for example, the ethylene and acetylene groupings, and the phenyl and naphthyl radicals. Thus the characterisation of unsaturated hydrocarbons and their derivatives, e.g., the aromatic compounds, becomes possible. [Pg.1026]

Having examined the properties of alkenes and introduced the elements of polymers and poly merization let s now look at some commercial applications of ethylene and propene... [Pg.269]

The property that most separates acetylene from ethane and ethylene is its acidity too can be explained on the basis of the greater electronegativity of sp hybridized... [Pg.367]

Let us now examine the Diels-Alder cycloaddition from a molecular orbital perspective Chemical experience such as the observation that the substituents that increase the reac tivity of a dienophile tend to be those that attract electrons suggests that electrons flow from the diene to the dienophile during the reaction Thus the orbitals to be considered are the HOMO of the diene and the LUMO of the dienophile As shown m Figure 10 11 for the case of ethylene and 1 3 butadiene the symmetry properties of the HOMO of the diene and the LUMO of the dienophile permit bond formation between the ends of the diene system and the two carbons of the dienophile double bond because the necessary orbitals overlap m phase with each other Cycloaddition of a diene and an alkene is said to be a symmetry allowed reaction... [Pg.414]

When applied to the synthesis of ethers the reaction is effective only with primary alcohols Elimination to form alkenes predominates with secondary and tertiary alcohols Diethyl ether is prepared on an industrial scale by heating ethanol with sulfuric acid at 140°C At higher temperatures elimination predominates and ethylene is the major product A mechanism for the formation of diethyl ether is outlined m Figure 15 3 The individual steps of this mechanism are analogous to those seen earlier Nucleophilic attack on a protonated alcohol was encountered m the reaction of primary alcohols with hydrogen halides (Section 4 12) and the nucleophilic properties of alcohols were dis cussed m the context of solvolysis reactions (Section 8 7) Both the first and the last steps are proton transfer reactions between oxygens... [Pg.637]

It resembles polytetrafiuoroethylene and fiuorinated ethylene propylene in its chemical resistance, electrical properties, and coefficient of friction. Its strength, hardness, and wear resistance are about equal to the former plastic and superior to that of the latter at temperatures above 150°C. [Pg.1016]

Its properties resemble those of ethylene-chlorotrilluoroethylene copolymer. [Pg.1017]

The desired form in homopolymers is the isotactic arrangement (at least 93% is required to give the desired properties). Copolymers have a random arrangement. In block copolymers a secondary reactor is used where active polymer chains can further polymerize to produce segments that use ethylene monomer. [Pg.1021]

Properties ethylene-propylene resin Poly(vinylidene fluoride) Unfilled Glass-fiber- reinforced ethylene copolymer Cellulose- filled Glass-fiber- reinforced... [Pg.1037]

Ben2onitri1e [100-47-0] C H CN, is a colorless Hquid with a characteristic almondlike odor. Its physical properties are Hsted in Table 10. It is miscible with acetone, ben2ene, chloroform, ethyl acetate, ethylene chloride, and other common organic solvents but is immiscible with water at ambient temperatures and soluble to ca 1 wt% at 100°C. It distills at atmospheric pressure without decomposition, but slowly discolors in the presence of light. [Pg.224]

Most of the polymer s characteristics stem from its molecular stmcture, which like POE, promotes solubiUty in a variety of solvents in addition to water. It exhibits Newtonian rheology and is mechanically stable relative to other thermoplastics. It also forms miscible blends with a variety of other polymers. The water solubiUty and hot meltable characteristics promote adhesion in a number of appHcations. PEOX has been observed to promote adhesion comparable with PVP and PVA on aluminum foil, cellophane, nylon, poly(methyl methacrylate), and poly(ethylene terephthalate), and in composite systems improved tensile strength and Izod impact properties have been noted. [Pg.320]

The many commercially attractive properties of acetal resins are due in large part to the inherent high crystallinity of the base polymers. Values reported for percentage crystallinity (x ray, density) range from 60 to 77%. The lower values are typical of copolymer. Poly oxymethylene most commonly crystallizes in a hexagonal unit cell (9) with the polymer chains in a 9/5 helix (10,11). An orthorhombic unit cell has also been reported (9). The oxyethylene units in copolymers of trioxane and ethylene oxide can be incorporated in the crystal lattice (12). The nominal value of the melting point of homopolymer is 175°C, that of the copolymer is 165°C. Other thermal properties, which depend substantially on the crystallization or melting of the polymer, are Hsted in Table 1. See also reference 13. [Pg.56]

Chemical Structure and Properties. Homopolymer consists exclusively of repeating oxymethylene units. The copolymer contains alkyhdene units (eg, ethyUdene —CH2—CH2—) randomly distributed along the chain. A variety of end groups may be present in the polymers. Both homopolymer and copolymer may have alkoxy, especially methoxy (CH3 O—), or formate (HCOO—) end groups. Copolymer made with ethylene oxide has 2-hydroxyethoxy end groups. Homopolymer generally has acetate end groups. [Pg.57]

Actinide ions form complex ions with a large number of organic substances (12). Their extractabiUty by these substances varies from element to element and depends markedly on oxidation state. A number of important separation procedures are based on this property. Solvents that behave in this way are thbutyl phosphate, diethyl ether [60-29-7J, ketones such as diisopropyl ketone [565-80-5] or methyl isobutyl ketone [108-10-17, and several glycol ether type solvents such as diethyl CeUosolve [629-14-1] (ethylene glycol diethyl ether) or dibutyl Carbitol [112-73-2] (diethylene glycol dibutyl ether). [Pg.220]


See other pages where Ethylene, properties is mentioned: [Pg.79]    [Pg.79]    [Pg.330]    [Pg.1979]    [Pg.2628]    [Pg.242]    [Pg.189]    [Pg.1021]    [Pg.5]    [Pg.208]    [Pg.209]    [Pg.229]    [Pg.231]    [Pg.316]    [Pg.186]    [Pg.235]    [Pg.449]    [Pg.11]    [Pg.12]    [Pg.13]   
See also in sourсe #XX -- [ Pg.359 ]

See also in sourсe #XX -- [ Pg.32 ]

See also in sourсe #XX -- [ Pg.326 ]

See also in sourсe #XX -- [ Pg.1008 ]




SEARCH



Beneficial Micro Reactor Properties for Ethylene Oxide Formation

Ethylene chemical properties

Ethylene chlorotrifluoroethylene mechanical properties

Ethylene combustion properties

Ethylene copolymers properties

Ethylene dichloride, physical properties

Ethylene exposion properties

Ethylene flame properties

Ethylene formulations, properties

Ethylene glycol physical properties

Ethylene glycol properties

Ethylene ionomers physical properties

Ethylene oxide physical properties

Ethylene oxide thermodynamic properties

Ethylene physical properties

Ethylene polymers properties

Ethylene propylene mechanical properties

Ethylene terephthalate plastic properties

Ethylene tetrafluoroethylene copolymer chemical properties

Ethylene tetrafluoroethylene copolymer mechanical properties

Ethylene tetrafluoroethylene mechanical properties

Ethylene tetrafluoroethylene properties

Ethylene vinyl acetate mechanical properties

Ethylene vinyl acetate rheological properties

Ethylene vinyl acetate viscoelastic properties

Ethylene vinyl alcohol barrier properties

Ethylene, thermodynamic properties

Ethylene-carbon monoxide physical properties

Ethylene-chlorotrifluoroethylene copolymer properties

Ethylene-propylene copolymers physical properties

Ethylene-propylene copolymers properties

Ethylene-propylene diene rubber properties

Ethylene-propylene properties

Ethylene-propylene rubbers properties

Ethylene-propylene-diene monomer physical properties

Ethylene-propylene-diene monomer properties

Ethylene-propylene-diene monomer tensile properties

Ethylene-propylene-diene monomer terpolymer tensile properties

Ethylene-propylene-diene properties

Ethylene-propylene-diene tensile properties

Ethylene-propylene-diene terpolymer mechanical properties

Ethylene-propylene-diene terpolymer properties

Ethylene-tetrafluoroethylene copolymer properties

Ethylene-vinyl acetate copolymer properties

Ethylene-vinyl acetate thermal properties

Ethylene-vinyl alcohol surface properties

Fluorinated ethylene propylene electrical properties

Fluorinated ethylene propylene mechanical properties

Fluorinated ethylene propylene properties

Fluorinated ethylene-propylene resin properties

Mechanical properties ethylene-propylene-diene terpolymers

Physical Properties and Specifications of Ethylene Glycol

Physical properties of ethylene ionomers

Poly ethylene terephthalate properties

Poly(ethylene-2,6-naphthalene properties

Property Data and Coefficients for Ethylene

Structure-Property Relationships for Ethylene-Styrene Interpolymers

Symmetry properties of ethylene, butadiene, and cyclohexene orbitals with respect to cycloaddition

Thermodynamic Properties of Ethylene

© 2024 chempedia.info