Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene palladium-catalyzed oxidation

Compared with these methods, the palladium-catalyzed oxidation of 1-olefins described here is more convenient and practical. The industrial method of ethylene oxidation to acetaldehyde using PdCl2-CuCl 2-O2 original reaction of this type. The oxidation of various olefins has been carried out. ... [Pg.11]

Palladium-catalyzed oxidation of hydrocarbons has been a matter of intense research for about four decades. The field was initiated by the development of the aerobic oxidation of ethylene to acetaldehyde catalyzed by palladium chloride and co-catalyzed by cupric chloride (the Wacker process, equation l)1. [Pg.653]

Poly(ethylene oxide) polymers and poly(ethylene oxide/propylene oxide) copolymers with iminodipropionitrile (139) or iminodiacetonitrile end groups were used as ligands in the palladium-catalyzed oxidation of higher olefins (1-octene to 1-hexadecene) at 50-70 °C with atmospheric air or 1-3 bar O2. In an ethanol/water mixture 88 % yield of 2-hexanone and 92 % yield of 2-hexadecanone was obtained in 4 and 2 h, respectively, with a... [Pg.212]

The most common oxidation state of palladium is H-2 which corresponds toa electronic configuration. Compounds have square planar geometry. Other important oxidation states and electronic configurations include 0 ( °), which can have coordination numbers ranging from two to four and is important in catalytic chemistry, and +4 (eft), which is octahedral and much more strongly oxidizing than platinum (IV). The chemistry of palladium is similar to that of platinum, but palladium is between 103 to 5 x 10s more labile (192). A primary industrial application is palladium-catalyzed oxidation of ethylene (see Olefin polymers) to acetaldehyde (qv). Palladium-catalyzed carbon—carbon bond formation is an important organic reaction. [Pg.182]

We do not know if the vinylic alcohol is actually an intermediate or whether a hydride-71 complex of it rearranges directly to the aldehyde as probably happens in the palladium-catalyzed oxidation of ethylene to acetaldehyde. The formation of 4% 2-methyl-2-phenylpropanal is unexpected. This product must arise from a reversed addition of the phenylpalladium group followed by a hydrogen transfer from the hydroxyl-bearing carbon to the palladium, followed by reductive elimination of a hydridopalladium group. An alkyoxypalladium intermediate has been proposed (39). [Pg.342]

Another example is the palladium-catalyzed oxidation of ethylene to acetaldehyde in the presence of oxygen and cupric salts, the so-called Wacker reaction. This catalytic cycle combines two stoichiometric processes, which involve first the reduction of Pd11 to Pd°, followed by reoxidation with Cu11. The understanding of the first step of this process came from the earlier work of Kharasch et al., who showed that the stoichiometric dinuclear complex shown in Figure 2.14 decomposed in the presence of water to acetaldehyde (ethanal), Pd° and HC1 [38]. [Pg.64]

The palladium-catalyzed oxidation of ethylene to acetaldehyde (the Wacker process) was discovered by Smidt and co-workers514-518 in 1959. This process combines the stoichiometric reduction of Pd(II) with reoxidation of metal in situ by molecular oxygen in the presence of copper salts. The overall reaction constitutes a palladium-catalyzed oxidation of ethylene to acetaldehyde by molecular oxygen ... [Pg.361]

Figure 28 shows that the chemistry involved in the Wacker process could in principle be extended to other nucleophiles. The modern catalytic manufacturing process making vinyl acetate from ethylene and acetic acid is based on the observation that palladium catalyzed oxidation of ethylene to acetaldehyde can be converted into an acetoxylation reaction if carried out in a solution of acetic acid and in the presence of sodium acetate (Equation 42). [Pg.70]

Although isomerization of alkenes occurs simultaneously with the oxidation, rhodium and ruthenium complexes can also be used instead of palladium for the oxidation of terminal alkene [15]. With these catalysts, symmetrical quaternary ammonium salts such as tetrabutylammonium hydrogensulfate are effective. Interestingly, the rate of palladium-catalyzed oxidation of terminal alkenes can be improved by using poly(ethylene glycol) (PEG) instead of quaternary ammonium salts [16]. Thus, the rates of PEG-400-induced oxidation of 1-decene are up three times faster than those observed with cetyltrimethylammonium bromide under the same conditions. Interestingly, internal alkenes can be efficiently oxidized in this polyethylene glycol/water mixture. [Pg.483]

The palladium-catalyzed oxidation of ethylene to acetaldehyde, often called the Wacker process after the company that developed it, is one of the oldest and best known reactions of palladium (see Chapter 9). The oxidation is usually carried out in water with oxygen as the oxidant in the presence of cupric chloride, which catalyzes the oxidation of Pd(0) formed in the ethylene oxidation back to the active state [1]. [Pg.173]

Scheme 2-8 Palladium-catalyzed oxidation of ethylene to acetaldehyde... Scheme 2-8 Palladium-catalyzed oxidation of ethylene to acetaldehyde...
Many types of palladium-catalyzed oxidative fimctionalizations of olefins related to the Wacker process have been developed, and these reactions are presented later in this chapter. To imderstand the relationship between these reactions and the basic Wacker oxidation of ethylene to form acetaldehye, the mechanism of the Wacker process is discussed before the related oxidation processes. [Pg.719]

Intermolecular Additions of Alcohois and Carboxylates The intermolecular oxidations of olefins with alcohols as nucleophile typically generate ketals, whereas the palladium-catalyzed oxidations of olefins with carboxylic acids as nucleophile generates vinylic or allylic carboxylates. As a result, many of the oxidations with alcohols have been conducted with diols to generate stable cyclic acetal products. Both types of oxidations have been conducted on large industrial scale, and vinyl acetate is produced from the oxidative reaction of ethylene with acetic acid in the gas phase over a supported palladium catalyst. ... [Pg.722]

As noted above, the oxidative reaction of ethylene with acetic acid forms vinyl acetate (Equation 16.107), and this reaction has been conducted on industrial settings in both the liquid phase and in the gas phase with a supported palladium catalyst. Allyl alcohol is also produced by palladium-catalyzed oxidations. The reaction of pro-pene with acetic acid in the presence of a combination of palladium and copper forms allyl acetate (Equation 16.108), which is hydrolyzed to the alcohol. Cyclic olefins also undergo allylic oxidation, in this case to generate allylic esters. A variety of combinations of palladium acetate and co-oxidants and additives give rise to this allylic ester in good to excellent yields. Equation 16.109 summarizes results for the reactions of cyclohexene. ... [Pg.723]

The modern commercial process for making vinyl acetate is based on palladium-catalyzed oxidative coupling of ethylene and acetic acid [217]. This process has largely supplanted the older acetylene based method of preparing vinyl acetate. Again, this reaction can be carried out by either a liquid- or a gas-phase process. The basic chemistry of the liquid-phase reaction is shown in the following equations (34) 36). [Pg.183]

Oxidative Carbonylation of Ethylene—Elimination of Alcohol from p-Alkoxypropionates. Spectacular progress in the 1970s led to the rapid development of organotransition-metal chemistry, particularly to catalyze olefin reactions (93,94). A number of patents have been issued (28,95—97) for the oxidative carbonylation of ethylene to provide acryUc acid and esters. The procedure is based on the palladium catalyzed carbonylation of ethylene in the Hquid phase at temperatures of 50—200°C. Esters are formed when alcohols are included. Anhydrous conditions are desirable to minimize the formation of by-products including acetaldehyde and carbon dioxide (see Acetaldehyde). [Pg.156]

Meanwhile, Wacker Chemie developed the palladium-copper-catalyzed oxidative hydration of ethylene to acetaldehyde. In 1965 BASF described a high-pressure process for the carbonylation of methanol to acetic acid using an iodide-promoted cobalt catalyst (/, 2), and then in 1968, Paulik and Roth of Monsanto Company announced the discovery of a low-pressure carbonylation of methanol using an iodide-promoted rhodium or iridium catalyst (J). In 1970 Monsanto started up a large plant based on the rhodium catalyst. [Pg.256]

Wacker (1) A general process for oxidizing aliphatic hydrocarbons to aldehydes or ketones by the use of oxygen, catalyzed by an aqueous solution of mixed palladium and copper chlorides. Ethylene is thus oxidized to acetaldehyde. If the reaction is conducted in acetic acid, the product is vinyl acetate. The process can be operated with the catalyst in solution, or with the catalyst deposited on a support such as activated caibon. There has been a considerable amount of fundamental research on the reaction mechanism, which is believed to proceed by alternate oxidation and reduction of the palladium ... [Pg.286]

The Wacker process (Eq. 1) was developed nearly 50 years ago [1-3] and represents one of the most successful examples of homogeneous catalysis in industry [4-9]. This palladium-catalyzed method for the oxidation of ethylene to acetaldehyde in aqueous solution employs a copper cocatalyst to facilitate aerobic oxidation of Pd° (Scheme 1). Despite the success of this process, certain features of the reaction have Umited the development of related aerobic oxidation reactions. Many organic molecules are only sparingly sol-... [Pg.77]

Palladium-catalyzed addition of oxygen nucleophiles to alkenes dates back to the Wacker process and acetoxylation of ethylene (Sects. 1 and 2). In contrast, catalytic methods for intermolecular oxidative amination of alkenes (i.e., aza-Wacker reactions) have been identified only recently. Both O2 and BQ have been used as oxidants in these reactions. [Pg.102]

Palladium chloride or the chloropalladite ion catalyze the oxidation of olefins to aldehydes or ketones, presumably by forming unstable palladium-olefin complex intermediates 196). A reaction of great industrial importance is the palladium chloride/cupric chloride catalyzed oxidation of ethylene to acetaldehyde 195). The first stage is presumably the oxidative hydrolysis of ethylene,... [Pg.98]

The previous examples involve reduction (hydrogenation) of organic molecules, but transition metal complexes can also catalyze oxidation. For example, the Wacker process, which has been widely used to convert ethylene to acetaldehyde, depends on catalysis by palladium(II) in the presence of copper(II) in aqueous HC1. The role of the copper chloride is to provide a means of using air to reoxidize the palladium to palladium(II). Once again, Zeise-type coordination of the ethylene to the metal center is believed to be involved ... [Pg.402]

Ethylene can be oxidized to acetaldehyde in high yields similar to the Wacker-process if electrogenerated palladium(ll) is used as catalyst. In this way the copper(II) catalyzed air oxidation of palladium(O) is replaced by the electrooxidation according to Eq. (40). [Pg.19]

Ipaktschi and Sharifl reported the palladium-catalyzed synthesis of 2,7-diamino fluorenones by two indirect routes due to the base sensitivity of fluorenones [182]. First, 2,7-dibromofluorene was reacted with secondary amines, and subsequent oxidation of the product formed the diaminofluorenone. Alternatively, reaction of ami-nostannanes derived from secondary amines with 2,7-dibromofluorenone gave yields of the fluorenone ranging from 42 to 58%. Beletskaya has used the DPPF-ligated palladium system to conduct selective monoarylation of ethylene diamine, diethylene triamine, triethylene tetra-amines, and 2,2-dimethyl butane-1,3-diamine [183]. [Pg.240]

Ever since the initial discovery of the Wacker process [1], i.e. the Pd/Cu-catalyzed oxidation of ethylene to acetaldehyde (1) in water, methods for the palladium (II) - mediated oxidative functionalization of alkenes have found widespread application in the synthesis of complex molecules [2J. [Pg.83]

Hydroxyketones are versatile intermediates in the synthesis of pharmaceutical intermediates and heterocyclic molecules. a-Aryl hydroxyketones have been prepared by reaction of aryl aldehydes with 1,4-dioxane followed by reduction with lithium aluminum hydride (LAH) and by the selective LAH reduction of a-silyloxy a,P-unsaturated esters." WissneC has shown that treatment of acid chlorides with tris(trimethylsilyloxy)ethylene affords alkyl and aryl hydroxymethyl ketones. 1-Hydroxy-3-phenyl-2-propanone (3) has been generated by the osmium-catalyzed oxidation of phenylpropene and by the palladium-catalyzed rearrangement of phenyl epoxy alcohoP both in 62% yield. [Pg.89]

P-Lactones can be obtained by oxidative carbonylation of alkenes in the presence of water. Ethylene, for example, is converted to p-propiolactone by carbonylation in aqueous acetonitrile at -20 C using a catalytic amount of PdCh and a stoichiometric quantity of copper(II) chloride (equation 37). Palladium-catalyzed carbonylation of halides can also be used to prepare p-lactones under mild conditions. The reaction takes place at room temperature and pressure in the presence of [PdCl2(PPh3)2] and has been applied to both bromides and chlorides (equations 38 and 39). [Pg.1031]


See other pages where Ethylene palladium-catalyzed oxidation is mentioned: [Pg.509]    [Pg.1287]    [Pg.482]    [Pg.770]    [Pg.147]    [Pg.718]    [Pg.1265]    [Pg.193]    [Pg.257]    [Pg.10]    [Pg.21]    [Pg.472]    [Pg.257]    [Pg.119]    [Pg.272]    [Pg.168]    [Pg.361]   
See also in sourсe #XX -- [ Pg.1287 ]




SEARCH



Oxidation palladium

Oxidations palladium-catalyzed

Palladium -catalyzed oxidative

Palladium oxide

Palladium oxidized

© 2024 chempedia.info