Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium-catalyzed oxidative

P. M. Henry, Palladium Catalyzed Oxidation of Hvdrocarbons. D. Reidel Pub. Co.. Dordrecht. 1980. [Pg.11]

The 5-oxohexanal 27 is prepared by the following three-step procedure (1) 1,2-addition of allylmagnesium bromide to an a, / -unsaturated aldehyde to give the 3-hydroxy-1,5-diene 25, (2) oxy-Cope rearrangement of 25 to give 26, and (3) palladium catalyzed oxidation to afford 27. The method was applied to the synthesis of A -2-octalone (28), which is difficult to prepare by the Robinson annulation[25]. [Pg.26]

Compared with these methods, the palladium-catalyzed oxidation of 1-olefins described here is more convenient and practical. The industrial method of ethylene oxidation to acetaldehyde using PdCl2-CuCl 2-O2 original reaction of this type. The oxidation of various olefins has been carried out. ... [Pg.11]

Use of DMF as a solvent for the oxidation of l-o1efins has been reported by Clement and Selwitz. The method requires only a catalytic amount of PdCl2 and gives satisfactory yields under mild conditions. A small amount of olefin migration product is the only noticeable contaminant in the cases reported. The procedure can be applied satisfactorily to various 1-olefins with other functional groups. This useful synthetic method for the preparation of methyl ketones has been applied extensively in the syntheses of natural products such as steroids,macrolides, dihydrojasmone, and muscone. " A comprehensive review article on the palladium-catalyzed oxidation of olefins has... [Pg.11]

Later, a nickel-catalyzed cascade conversion of propargyl halides and propargyl alcohol into a pyrone in water was reported. The reaction involved a carbonylation by CO and a cyanation by KCN (Eq. 4.55).96 Recently, Gabriele et al. explored a facile synthesis of maleic acids by palladium catalyzed-oxidative carbonylation of terminal alkynes in aqueous DME (1,2-dimethoxyethane) (Eq. 4.56).97... [Pg.127]

Another route to the diol monomer is provided by hydroformylation of allyl alcohol or allyl acetate. Allyl acetate can be produced easily by the palladium-catalyzed oxidation of propylene in the presence of acetic acid in a process similar to commercial vinyl acetate production. Both cobalt-and rhodium-catalyzed hydroformylations have received much attention in recent patent literature (83-86). Hydroformylation with cobalt carbonyl at 140°C and 180-200 atm H2/CO (83) gave a mixture of three aldehydes in 85-99% total yield. [Pg.40]

Palladium-catalyzed oxidation of hydrocarbons has been a matter of intense research for about four decades. The field was initiated by the development of the aerobic oxidation of ethylene to acetaldehyde catalyzed by palladium chloride and co-catalyzed by cupric chloride (the Wacker process, equation l)1. [Pg.653]

In most palladium-catalyzed oxidations of unsaturated hydrocarbons the reaction begins with a coordination of the double bond to palladium(II). In such palladium(II) olefin complexes (1), which are square planar d8 complexes, the double bond is activated towards further reactions, in particular towards nucleophilic attack. A fairly strong interaction between a vacant orbital on palladium and the filled --orbital on the alkene, together with only a weak interaction between a filled metal d-orbital and the olefin ji -orbital (back donation), leads to an electrophilic activation of the alkene9. [Pg.654]

As mentioned above nonconjugated dienes give stable complexes where the two double bonds can form a chelate complex. A common pathway in palladium-catalyzed oxidation of nonconjugated dienes is that, after a first nucleophilic addition to one of the double bonds, the second double bond inserts into the palladium-carbon bond. The new (cr-alkyl)palladium complex produced can then undergo a /(-elimination or an oxidative cleavage reaction (Scheme 2). An early example of this type of reaction, although not catalytic, was reported by Tsuji and Takahashi (equation 2)12. [Pg.655]

The palladium-catalyzed oxidation of the 1,2-divinylcyclohexane system was applied to diastereoselective reactions with the use of chiral acids as nucleophiles25. With this technique an asymmetric induction of up to 76% was obtained in the formation of 21 from 14 (equation 9). The use of molecular sieves was essential in order to obtain a good asymmetric induction. [Pg.660]

Palladium-catalyzed oxidation of 1,4-dienes has also been reported. Thus, Brown and Davidson28 obtained the 1,3-diacetate 25 from oxidation of 1,4-cyclohexadiene by ben-zoquinone in acetic acid with palladium acetate as the catalyst (Scheme 3). Presumably the reaction proceeds via acetoxypalladation-isomerization to give a rr-allyl intermediate, which subsequently undergoes nucleophilic attack by acetate. This principle, i.e. rearrangement of a (allyl)palladium complex, has been applied in nonoxidative palladium-catalyzed reactions of 1,4-dienes by Larock and coworkers29. Akermark and coworkers have demonstrated the stereochemistry of this process by the transformation of 1,4-cyclohexadiene to the ( r-allyl)palladium complex 26 by treatment... [Pg.660]

An increased chloride ion concentration in the palladium-catalyzed oxidation of 1,3-cyclohexadiene resulted in a highly stereo- and regioselective 1,4-chloroacetoxylation35. The product selectivity was also high. Thus, palladium-catalyzed chloroacetoxylation afforded an 89% isolated yield of chloroacetate 29 which was >98% cis (Scheme 5). Only 1-2% of diacetate was observed in the crude product. [Pg.663]

A mild aerobic palladium-catalyzed 1,4-diacetoxylation of conjugated dienes has been developed and is based on a multistep electron transfer46. The hydroquinone produced in each cycle of the palladium-catalyzed oxidation is reoxidized by air or molecular oxygen. The latter reoxidation requires a metal macrocycle as catalyst. In the aerobic process there are no side products formed except water, and the stoichiometry of the reaction is given in equation 19. Thus 1,3-cyclohexadiene is oxidized by molecular oxygen to diacetate 39 with the aid of the triple catalytic system Pd(II)—BQ—MLm where MLm is a metal macrocyclic complex such as cobalt tetraphenylporphyrin (Co(TPP)), cobalt salophen (Co(Salophen) or iron phthalocyanine (Fe(Pc)). The principle of this biomimetic aerobic oxidation is outlined in Scheme 8. [Pg.667]

Attempts to employ allenes in palladium-catalyzed oxidations have so far given dimeric products via jr al lyI complexes of type 7i62.63. The fact that only very little 1,2-addition product is formed via nucleophilic attack on jral ly I complex 69 indicates that the kinetic chloropalladation intermediate is 70. Although formation of 70 is reversible, it is trapped by the excess of allene present in the catalytic reaction to give dimeric products. The only reported example of a selective intermolecular 1,2-addition to allenes is the carbonylation given in equation 31, which is a stoichiometric oxidation64. [Pg.678]

An example of an intramolecular palladium-catalyzed oxidation of an allene involving carbonylation was used in the synthesis of pumilotoxin 251 D (equation 32)65. Intramolecular aminopalladation of the allene followed by carbonylation of the palladium-carbon bond and subsequent oxidative cleavage of the acylpalladium intermediate by CuCE afforded pyrrolidine 72 in which the chirality at the carbon at the 2-position was established. [Pg.678]

Although there are indeed only few reported methods of direct activation of molecular oxygen via transition metals, there are many reports of indirect oxidation. The majority of this research is based on palladium-based oxidation as summarized in equation 32. The palladium complex catalyzed oxidation reactions have been reviewed previously186 and also only very recently187 and in this book the palladium catalyzed oxidation of dienes and polyenes will be discussed separately and therefore will not be discussed... [Pg.919]

Palladium-catalyzed oxidative couplings of aromatic compounds with alkenes in air lead to cinnamate products with TONs attaining 280 (Equations (66) and (67)).67,67a,67b... [Pg.123]

The palladium-catalyzed reaction of benzol]quinoline in the presence of PhI(OAc)2 as an oxidant in MeCN gives an 11 1 mixture of 10-acetoxy- and 10-hydroxybenzo[ ]quinolines in 86% yield (Equation (98)).135 This chelation-directed oxidation can be extended to the benzylic C-H bond of 8-methylquinoline. The inactivated sp3 C-H bonds of oximes and pyridines undergo the same palladium-catalyzed oxidation with PhI(OAc)2 (Equation (99)).1... [Pg.238]


See other pages where Palladium-catalyzed oxidative is mentioned: [Pg.1587]    [Pg.87]    [Pg.150]    [Pg.195]    [Pg.249]    [Pg.653]    [Pg.653]    [Pg.654]    [Pg.655]    [Pg.657]    [Pg.657]    [Pg.658]    [Pg.659]    [Pg.661]    [Pg.663]    [Pg.665]    [Pg.667]    [Pg.669]    [Pg.671]    [Pg.673]    [Pg.675]    [Pg.677]    [Pg.679]    [Pg.682]    [Pg.913]    [Pg.1069]    [Pg.151]    [Pg.710]    [Pg.714]    [Pg.645]   


SEARCH



Akiya Ogawa PALLADIUM-CATALYZED OXIDATION REACTIONS THAT HAVE NOT BEEN DISCUSSED IN EARLIER PARTS .l Background for Part VIII

Alcohols, oxidation aerobic, palladium-catalyzed

Alkenes palladium-catalyzed oxidation

Buchwald palladium -catalyzed oxidative

Carbazoles palladium -catalyzed oxidative

Direct intramolecular oxidative functionalization, palladium-catalyzed

Ethylene palladium catalyzed oxidation

Intramolecular oxidative functionalization, palladium-catalyzed

Oxidants, palladium-catalyzed reactions, copper®) bromide

Oxidation palladium

Oxidations palladium-catalyzed

Oxidations palladium-catalyzed

Oxidative coupling palladium-catalyzed

Palladium -catalyzed oxidation of olefins

Palladium -catalyzed oxidative carbonylatio

Palladium -catalyzed oxidative cyclization

Palladium catalyzed oxidation with

Palladium catalyzed oxidations aliphatics

Palladium catalyzed oxidations aromatics

Palladium catalyzed oxidations formation

Palladium catalyzed oxidations kinetic studies

Palladium catalyzed oxidations mechanism

Palladium catalyzed oxidations of cyclohexene

Palladium catalyzed oxidations of ethylene

Palladium catalyzed oxidations with added oxidant

Palladium oxide

Palladium oxidized

Palladium-Catalyzed Carbonylative Oxidation

Palladium-Catalyzed Carbonylative Oxidation of Arenes, Alkanes, and Other Hydrocarbons

Palladium-Catalyzed Indole Ring Synthesis Oxidative Cyclization

Palladium-Catalyzed Oxidation of Alkenes

Palladium-catalyzed Allylic Oxidations

Palladium-catalyzed Benzylic Oxidations

Palladium-catalyzed aerobic oxidation

Palladium-catalyzed amination oxidative addition

Palladium-catalyzed oxidative addition

Palladium-catalyzed oxidative cross-coupling

Palladium-catalyzed reactions oxidative addition

Steroids via palladium catalyzed oxidation

Thiazoles palladium-catalyzed oxidative

Wacker oxidation, palladium-catalyzed

Yuzo Fujiwara and Chengguo Jia 2 Palladium-Catalyzed Carbonylative Oxidation Other than Those Involving Migratory Insertion

© 2024 chempedia.info