Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethyl acetate, 31 Table

Reactivity of a number of solid acid catalysts that include zeolites, resin, nafion and HP As was determined for the direct reaction of ethylene with acetic acid to produce ethyl acetate (Table 1). It was established that the Keggin HSiW supported on silica is very active for the vapom phase reaction of acetic acid with ethylene at about 180°C, 145 psig with a high molar ratio of ethylene to... [Pg.254]

The cyanato- and, especially, the thiocyanato-boranes form equally stable complexes with amines, nitriles and ethyl acetate (Table 6). The Lewis acidity of these pseudohalogenoboranes and halogenoboranes, with respect to pyridine and ethyl acetate, follows the order Cl >NCS > NCO > F.79... [Pg.88]

Tn comparison to conventional extraction with ethyl acetate, Table HI for parameters... [Pg.231]

Optimization studies revealed that cycloaddilions of cyclic silyl enol ethers with ethyl propiolate (21a), promoted by 2 mol % Tf2NH, occurred at ambient temperature to generate cyclobutenes 22a-C in good yields. Finally, exploratory studies aimed at further optimizing the cyclobutane forming process showed that the organic acid catalyzed cycloaddition reaction could be successfully performed in various solvents, such as toluene, acetonitrile, dichloroethane, and ethyl acetate (Table 4.9). The reactions of propiolate took place even under solvent-free conditions. Although reactions of acrylates normally required careful control of temperature below —40 °C, in ethyl acetate these cycloadditions took place at more conveniently accessed ambient temperatures. [Pg.123]

Various 4-, 5-, or 4,5-disubstituted 2-aryIamino thiazoles (124), R, = QH4R with R = 0-, m-, or p-Me, HO C, Cl, Br, H N, NHAc, NR2, OH, OR, or OjN, were obtained by condensing the corresponding N-arylthiourea with chloroacetone (81, 86, 423), dichloroacetone (510, 618), phenacyichloride or its p-substituted methyl, f-butyl, n-dodecyl or undecyl (653), or 2-chlorocyclohexanone (653) (Method A) or with 2-butanone (423), acetophenone or its p-substituted derivatives (399, 439), ethyl acetate (400), ethyl acetyl propionate (621), a- or 3-unsaturated ketones (691), benzylidene acetone, furfurylidene acetone, and mesityl oxide in the presence of Btj or Ij as condensing agent (Method B) (Table 11-17). [Pg.233]

Ben2onitri1e [100-47-0] C H CN, is a colorless Hquid with a characteristic almondlike odor. Its physical properties are Hsted in Table 10. It is miscible with acetone, ben2ene, chloroform, ethyl acetate, ethylene chloride, and other common organic solvents but is immiscible with water at ambient temperatures and soluble to ca 1 wt% at 100°C. It distills at atmospheric pressure without decomposition, but slowly discolors in the presence of light. [Pg.224]

Physical properties of glycerol are shown in Table 1. Glycerol is completely soluble in water and alcohol, slightly soluble in diethyl ether, ethyl acetate, and dioxane, and insoluble in hydrocarbons (1). Glycerol is seldom seen in the crystallised state because of its tendency to supercool and its pronounced freesing point depression when mixed with water. A mixture of 66.7% glycerol, 33.3% water forms a eutectic mixture with a freesing point of —46.5°C. [Pg.346]

Aminophenol. This compound forms white plates when crystallized from water. The base is difficult to maintain in the free state and deteriorates rapidly under the influence of air to pink-purple oxidation products. The crystals exist in two forms. The a-form (from alcohol, water, or ethyl acetate) is the more stable and has an orthorhombic pyramidal stmcture containing four molecules per unit cell. It has a density of 1.290 g/cm (1.305 also quoted). The less stable P-form (from acetone) exists as acicular crystals that turn into the a-form on standing they are orthorhombic bipyramidal or pyramidal and have a hexamolecular unit (15,16,24) (see Tables 3—5). [Pg.309]

Pyrrohdinone (2-pyrrohdone, butyrolactam or 2-Pyrol) (27) was first reported in 1889 as a product of the dehydration of 4-aminobutanoic acid (49). The synthesis used for commercial manufacture, ie, condensation of butyrolactone with ammonia at high temperatures, was first described in 1936 (50). Other synthetic routes include carbon monoxide insertion into allylamine (51,52), hydrolytic hydrogenation of succinonitnle (53,54), and hydrogenation of ammoniacal solutions of maleic or succinic acids (55—57). Properties of 2-pyrrohdinone are Hsted in Table 2. 2-Pyrrohdinone is completely miscible with water, lower alcohols, lower ketones, ether, ethyl acetate, chloroform, and benzene. It is soluble to ca 1 wt % in aUphatic hydrocarbons. [Pg.359]

The physical piopeities of ethyl chloiide aie hsted in Table 1. At 0°C, 100 g ethyl chloride dissolve 0.07 g water and 100 g water dissolve 0.447 g ethyl chloride. The solubihty of water in ethyl chloride increases sharply with temperature to 0.36 g/100 g at 50°C. Ethyl chloride dissolves many organic substances, such as fats, oils, resins, and waxes, and it is also a solvent for sulfur and phosphoms. It is miscible with methyl and ethyl alcohols, diethyl ether, ethyl acetate, methylene chloride, chloroform, carbon tetrachloride, and benzene. Butane, ethyl nitrite, and 2-methylbutane each have been reported to form a binary azeotrope with ethyl chloride, but the accuracy of this data is uncertain (1). [Pg.1]

The results obtained were probably as accurate and precise as any available and, consequently, were unique at the time of publication and probably unique even today. Data were reported for different columns, different mobile phases, packings of different particle size and for different solutes. Consequently, such data can be used in many ways to evaluate existing equations and also any developed in the future. For this reason, the full data are reproduced in Tables 1 and 2 in Appendix 1. It should be noted that in the curve fitting procedure, the true linear velocity calculated using the retention time of the totally excluded solute was employed. An example of an HETP curve obtained for benzyl acetate using 4.86%v/v ethyl acetate in hexane as the mobile phase and fitted to the Van Deemter equation is shown in Figure 1. [Pg.319]

Equations (4) and (5) predict that the optimum linear velocity should be linearly related to the diffusivity of the solute in the mobile phase, whereas the minimum value of the HETP should be constant and independent of the solute diffusivity. This, of course, will only be true for solutes eluted at the same (k ). It is seen, from Table 1, that (by appropriate adjustment of the concentration of ethyl acetate) the values of both (k ) and (k e) have been kept approximately constant for all the mobile phase... [Pg.326]

The solvent used was 5 %v/v ethyl acetate in n-hexane at a flow rate of 0.5 ml/min. Each solute was dissolved in the mobile phase at a concentration appropriate to its extinction coefficient. Each determination was carried out in triplicate and, if any individual measurement differed by more than 3% from either or both replicates, then further replicate samples were injected. All peaks were symmetrical (i.e., the asymmetry ratio was less than 1.1). The efficiency of each solute peak was taken as four times the square of the ratio of the retention time in seconds to the peak width in seconds measured at 0.6065 of the peak height. The diffusivities obtained for 69 different solutes are included with other physical and chromatographic properties in table 1. The diffusivity values are included here as they can be useful in many theoretical studies and there is a dearth of such data available in the literature (particularly for the type of solutes and solvents commonly used in LC separations). [Pg.338]

Table 1. Physical and Chromatographic Data for 70 Solutes in 5 %v/v Ethyl Acetate in n-Hexane... Table 1. Physical and Chromatographic Data for 70 Solutes in 5 %v/v Ethyl Acetate in n-Hexane...
A solution of 3 g of the nitrile, water (5 moles per mole of nitrile), and 20 g of boron trifluoride-acetic acid complex is heated (mantle or oil bath) at 115-120° for 10 minutes. The solution is cooled in an ice bath with stirring and is carefully made alkaline by the slow addition of 6 A sodium hydroxide (about 100 ml). The mixture is then extracted three times with 100-ml portions of 1 1 ether-ethyl acetate, the extracts are dried over anhydrous sodium sulfate, and the solvent is evaporated on a rotary evaporator to yield the desired amide. The product may be recrystallized from water or aqueous methanol. Examples are given in Table 7.1. [Pg.57]

Table 3 Effect of Varying Catalyst Concentration on the Hydrolysis of Ethyl Acetate (0.2 M) at 45°C... Table 3 Effect of Varying Catalyst Concentration on the Hydrolysis of Ethyl Acetate (0.2 M) at 45°C...
J mol ). This is additional evidence in favor of rate limitation by inner diffusion. However, the same reaction in the presence of Dowex-50, which has a more open three-dimensional network, gave an activation energy of 44800 J mol , and closely similar values were obtained for the hydrolysis of ethyl acetate [29] and dimethyl seb-acate [30]. The activation energy for the hydrolysis of ethyl acetate on a macroreticular sulphonated cationic exchanger [93] is 3566 J mol . For the hydrolysis of ethyl formate in a binary system, the isocomposition activation energy (Ec) [28,92] tends to decrease as the solvent content increases, while for solutions of the same dielectric constant, the iso-dielectric activation energy (Ed) increases as the dielectric constant of the solvent increases (Table 6). [Pg.779]

The common name of an ester consists of two words. The first word (methyl, ethyl,...) is derived from that of the alcohol the second word (formate, acetate,...) is the name of the acid with the -ic suffix replaced by -ate. Thus ethyl formate (Table 22.4) is made from ethyl alcohol and formic acid ... [Pg.595]

There have been numerous studies on the kinetics of decomposition of A IRK. AIBMe and other dialkyldiazenes.46 Solvent effects on are small by conventional standards but, nonetheless, significant. Data for AIBMe is presented in Table 3.3. The data come from a variety of sources and can be seen to increase in the series where the solvent is aliphatic < ester (including MMA) < aromatic (including styrene) < alcohol. There is a factor of two difference between kA in methanol and k< in ethyl acetate. The value of kA for AIBN is also reported to be higher in aromatic than in hydrocarbon solvents and to increase with the dielectric constant of the medium.31 79 80 Tlic kA of AIBMe and AIBN show no direct correlation with solvent viscosity (see also 3.3.1.1.3), which is consistent with the reaction being irreversible (Le. no cage return). [Pg.73]

One of the most dramatic examples of a solvent effect on propagation taken from the early literature is for vinyl acetate polymerization.78,79 Kamachi el al.n reported a ca. 80-fold reduction in kp (30aC) on shifting from ethyl acetate to benzonilrile solvent (Table 8.1). Effects on polymer structure were also reported. Hatada ef a m conducted a H NMR study on the structure of the PVAc formed in various solvents. They found that PVAc (M n 20000) produced in ethyl acetate solvent has 0.7 branches/chain while that formed in aromatic solvents is essentially unbranched. [Pg.427]

These procedures illustrate the use of N-ethyl-5-phenylisoxazolium-3 -sulfonate as a reagent for peptide synthesis.2-3 Procedure A is recommended for peptides that are not soluble in either organic solvents or in water. Procedure B illustrates the formation of a peptide that is soluble both in organic solvents and in water. Por peptides that are soluble in organic solvents and insoluble in water, the submitters recommend the use of Procedure B, except that the peptide product may be recovered directly from its solution in ethyl acetate after this organic solution has been washed successively with aqueous 5% sodium bicarbonate, water, aqueous 1 M hydrochloric acid, and water. Table I summarizes the preparation of various peptides by these procedures. Some more complex examples from other laboratories are listed elsewhere.2b... [Pg.92]

E7.2 The following table gives the partial molal volumes at T = 298.15 K of ethyl acetate (1) and carbon tetrachloride (2) in solutions of the two. [Pg.374]

Similar results have been obtained by Bonilla and Perry 79>, Insinger and Bliss 801, and others for a number of organic liquids such as benzene, alcohols, acetone, and carbon tetrachloride. The data in Table 9.9 for liquids boiling at atmospheric pressure show that tile maximum heat flux is much smaller with organic liquids than with water and the temperature difference at this condition is rather higher. In practice the critical value of AT may be exceeded. Sauer et al.m] found that the overall transfer coefficient U for boiling ethyl acetate with steam at 377 kN/m2 was only 14 per cent of that when the steam pressure was reduced to 115 kN/m2. [Pg.486]

Nonvolatile Nitrosamines In Tobacco. A method which we developed several years ago for the analysis of tobacco-specific nitrosamines (TSNA 31) involves extraction of tobacco with buffered ascorbic acid TpH 4.5) followed by partition with ethyl acetate, chromatographic clean-up on silica gel, and analysis by HPLC-TEA (Figure 9). Results obtained with this method for a large spectrum of tobacco products (Table IV), strongly support the concept that the levels of nitrate and alkaloids, and especially the methods for curing and fermentation, determine the yields of TSNA in tobacco products. Recent and as yet preliminary data from snuff analyses indicate that aerobic bacteria play a role in the formation of TSNA during air curing and fermentation. [Pg.258]

The catalytic alcohol racemization with diruthenium catalyst 1 is based on the reversible transfer hydrogenation mechanism. Meanwhile, the problem of ketone formation in the DKR of secondary alcohols with 1 was identified due to the liberation of molecular hydrogen. Then, we envisioned a novel asymmetric reductive acetylation of ketones to circumvent the problem of ketone formation (Scheme 6). A key factor of this process was the selection of hydrogen donors compatible with the DKR conditions. 2,6-Dimethyl-4-heptanol, which cannot be acylated by lipases, was chosen as a proper hydrogen donor. Asymmetric reductive acetylation of ketones was also possible under 1 atm hydrogen in ethyl acetate, which acted as acyl donor and solvent. Ethanol formation from ethyl acetate did not cause critical problem, and various ketones were successfully transformed into the corresponding chiral acetates (Table 17). However, reaction time (96 h) was unsatisfactory. [Pg.73]

The strategy for the asymmetric reductive acylation of ketones was extended to ketoximes (Scheme 9). The asymmetric reactions of ketoximes were performed with CALB and Pd/C in the presence of hydrogen, diisopropylethylamine, and ethyl acetate in toluene at 60° C for 5 days (Table 20) In comparison to the direct DKR of amines, the yields of chiral amides increased significantly. Diisopropylethylamine was responsible for the increase in yields. However, the major factor would be the slow generation of amines, which maintains the amine concentration low enough to suppress side reactions including the reductive aminafion. Disappointingly, this process is limited to benzylic amines. Additionally, low turnover frequencies also need to be overcome. [Pg.76]

A number of 1- and 2-aminophosphonates were resolved by a straight CAL-B-promoted acetylation of the amino group in the substrates rac-SS. Surprisingly, ethyl acetate had to be used as an acetylating agent, since the commonly applied vinyl acetate reacted with aminoalkanephosphonates even in the absence of an enzyme (Equation 30, Table 6). ... [Pg.181]

D-Xylulose 5-phosphate (ii-threo-2-pentulose 5-phosphate, XP) stands as an important metabolite of the pentose phosphate pathway, which plays a key fimction in the cell and provides intermediates for biosynthetic pathways. The starting compound of the pathway is glucose 6-phosphate, but XP can also be formed by direct phosphorylation of D-xylulose with li-xylulokinase. Tritsch et al. [114] developed a radiometric test system for the measurement of D-xylulose kinase (XK) activity in crude cell extracts. Aliquots were spotted onto silica plates and developed in n-propyl alcohol-ethyl acetate-water (6 1 3 (v/v) to separate o-xylose/o-xylulose from XP. Silica was scraped off and determined by liquid scintillation. The conversion rate of [ " C]o-xylose into [ " C]o-xylulose 5-phosphate was calculated. Some of the works devoted to the separation of components necessary while analyzing enzyme activity are presented in Table 9.8. [Pg.227]

Vitamin Bg and related compoimds (Figure 10.2) were quantitatively separated by preparative TLC on silica gel H. After elution, the pyridoxic acid lactone method was employed for fluorimetric determination of the concentration of the vitamin forms involved [8]. Table 10.2 shows Revalues obtained for various forms of vitamin Bg, using several solvent systems. The solvent selected, ethyl acetate/pyridine/water (2 1 2, v/v), gave excellent separation of pyridoxamine, pyridoxic acid, and pyri-doxine together with pyridoxal. [Pg.239]


See other pages where Ethyl acetate, 31 Table is mentioned: [Pg.33]    [Pg.84]    [Pg.47]    [Pg.25]    [Pg.192]    [Pg.248]    [Pg.503]    [Pg.409]    [Pg.1248]    [Pg.172]    [Pg.779]    [Pg.38]    [Pg.41]    [Pg.42]    [Pg.864]    [Pg.255]    [Pg.74]    [Pg.864]   
See also in sourсe #XX -- [ Pg.6 , Pg.301 , Pg.318 , Pg.319 ]




SEARCH



3- ethyl, tables

Acetals, table

© 2024 chempedia.info