Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Normal acrylation

Microfibers. PAC microfibers (single titer less than 1 dtex) behave differently in some respects from normal acrylic fibers [171], First, more dye is required for the desired shade in each case because of the greater light scattering of the fiber. This requirement increases more than twofold with increasing depth of color (similar to pore fibers). For this reason, the fiber saturation is usually adjusted to a higher value by the fiber producer. The characteristic dyeing rate of the fiber is... [Pg.416]

In the water-saturated state, the more porous fibers contain much more free water than do the normal acrylics, while both types of fibers contain approximately the same level of bound water. [Pg.905]

Indoles can also be alkylated by conjugate addition under alkaline conditions. Under acidic conditions, alkylation normally occurs at C3 (see Section 11.1). Table 9.1 includes examples of alkylation by ethyl acrylate, acrylonitrile, acrylamide and 4-vinylpyridine. [Pg.91]

Acryhc acid and esters are stabilized with minimum amounts of inhibitors consistent with stabihty and safety. The acryhc monomers must be stable and there should be no polymer formation for prolonged periods with normal storage and shipping (4,106). The monomethyl ether of hydroquinone (MEHQ) is frequentiy used as inhibitor and low inhibitor grades of the acrylate monomers are available for bulk handling. MEHQ at 10—15 ppm is generally... [Pg.156]

Acrolein, acrylamide, hydroxyalkyl acrylates, and other functional derivatives can be more hazardous from a health standpoint than acryhc acid and its simple alkyl esters. Furthermore, some derivatives, such as the alkyl 2-chloroacrylates, are powerful vesicants and can cause serious eye injuries. Thus, although the hazards of acryhc acid and the normal alkyl acrylates are moderate and they can be handled safely with ordinary care to industrial hygiene, this should not be assumed to be the case for compounds with chemically different functional groups (see Industrial hygiene Plant safety Toxicology). [Pg.157]

In normal practice, inhibitors such as hydroquinone (HQ) [123-31 -9] or the monomethyl ether of hydroquinone (MEHQ) [150-76-5] are added to acrylic monomers to stabilize them during shipment and storage. Uninhibited acrylic monomers should be used prompdy or stored at 10°C or below for no longer than a few weeks. Improperly iahibited monomers have the potential for violent polymerizations. HQ and MEHQ require the presence of oxygen to be effective inhibitors therefore, these monomers should be stored in contact with air and not under inert atmosphere. Because of the low concentration of inhibitors present in most commercial grades of acrylic monomers (generally less than 100 ppm), removal before use is not normally required. However, procedures for removal of inhibitors are available (67). [Pg.165]

In normal practice, good ventilation to reduce exposure to vapors, splash-proof goggles to avoid eye contact, and protective clothing to avoid skin contact are required for the safe handling of acrylic monomers. A more extensive discussion of these factors should be consulted before handling these monomers (67). [Pg.165]

The combination of durability and clarity and the ability to tailor molecules relatively easily to specific applications have made acryflc esters prime candidates for numerous and diverse applications. At normal temperatures the polyacrylates are soft polymers and therefore tend to find use in applications that require flexibility or extensibility. However, the ease of copolymerizing the softer acrylates with the harder methacrylates, styrene, acrylonitrile, and vinyl acetate, allows the manufacture of products that range from soft mbbers to hard nonfilm-forming polymers. [Pg.171]

During processing at elevated temperatures, normal precautions are needed to prevent accidental bums. Sudyn ionomers have U.S. Food and Dmg Administration clearance for food contact. Information about ionomers can be found in the articles Ethylene Acrylic acid and derivatives and Methacrylic acid and derivatives. [Pg.408]

Combination techniques such as microscopy—ftir and pyrolysis—ir have helped solve some particularly difficult separations and complex identifications. Microscopy—ftir has been used to determine the composition of copolymer fibers (22) polyacrylonitrile, methyl acrylate, and a dye-receptive organic sulfonate trimer have been identified in acryHc fiber. Both normal and grazing angle modes can be used to identify components (23). Pyrolysis—ir has been used to study polymer decomposition (24) and to determine the degree of cross-linking of sulfonated divinylbenzene—styrene copolymer (25) and ethylene or propylene levels and ratios in ethylene—propylene copolymers (26). [Pg.148]

Vinyhdene chloride copolymerizes randomly with methyl acrylate and nearly so with other acrylates. Very severe composition drift occurs, however, in copolymerizations with vinyl chloride or methacrylates. Several methods have been developed to produce homogeneous copolymers regardless of the reactivity ratio (43). These methods are appHcable mainly to emulsion and suspension processes where adequate stirring can be maintained. Copolymerization rates of VDC with small amounts of a second monomer are normally lower than its rate of homopolymerization. The kinetics of the copolymerization of VDC and VC have been studied (45—48). [Pg.430]

Studies of the copolymerization of VDC with methyl acrylate (MA) over a composition range of 0—16 wt % showed that near the intermediate composition (8 wt %), the polymerization rates nearly followed normal solution polymerization kinetics (49). However, at the two extremes (0 and 16 wt % MA), copolymerization showed significant auto acceleration. The observations are important because they show the significant complexities in these copolymerizations. The auto acceleration for the homopolymerization, ie, 0 wt % MA, is probably the result of a surface polymerization phenomenon. On the other hand, the auto acceleration for the 16 wt % MA copolymerization could be the result of Trommsdorff and Norrish-Smith effects. [Pg.430]

In principle, emulsified sunscreen products are similar to emollient skin-care products in which some of the emollient Hpids are replaced by uv absorbers. The formulation of an effective sunscreen product generally requites combination of a uvB and a uvA absorber if an SPF above about 12 is desired. Two or more of the sunscreens Hsted in Table 13 normally constitute about one-half of the nonvolatiles found in sunscreen lotions. The other half consists of an em ollient (solvent) and emulsifying and bodying agents. If water-resistant quaUties are desired, polymeric film formers, for example, acrylates—octylacrylamide copolymers [9002-93-1] or water-repellent Hpids, for example, dimetbicone [9006-65-9] are included. [Pg.298]

Acryhc elastomers are normally stable and not reactive with water. The material must be preheated before ignition can occur, and fire conditions offer no hazard beyond that of ordinary combustible material (56). Above 300°C these elastomers may pyrolize to release ethyl acrylate and other alkyl acrylates. Otherwise, thermal decomposition or combustion may produce carbon monoxide, carbon dioxide, and hydrogen chloride, and/or other chloiinated compounds if chlorine containing monomers are present ia the polymer. [Pg.478]

Mixing. Ethylene—acrylic elastomers are processed in the same manner as other elastomers. An internal mixer is used for large-scale production and a mbber mill for smaller scales. In either case, it is important to keep the compound as cool as possible and to avoid overmixing. Ethylene—acryflc elastomers require no breakdown period prior to addition of ingredients. Mixing cycles for a one-pass mix are short, typically 2.5—3.5 min. When compounds are mixed on a mbber mill, care should be taken to add the processing aids as soon as possible, after the polymer has been banded on the mill. Normal mill mixing procedures are followed otherwise. [Pg.500]

Figure 15.8. Light transmission of acrylic polymer (5 in thick moulded Diakon. Parallel light beam normally incident on surface). (Reproduced by permission of ICI)... Figure 15.8. Light transmission of acrylic polymer (5 in thick moulded Diakon. Parallel light beam normally incident on surface). (Reproduced by permission of ICI)...
Mangipudi et al. [63,88] reported some initial measurements of adhesion strength between semicrystalline PE surfaces. These measurements were done using the SFA as a function of contact time. Interestingly, these data (see Fig. 22) show that the normalized pull-off energy, a measure of intrinsic adhesion strength is increased with time of contact. They suggested the amorphous domains in PE could interdiffuse across the interface and thereby increase the adhesion of the interface. Falsafi et al. [37] also used the JKR technique to study the effect of composition on the adhesion of elastomeric acrylic pressure-sensitive adhesives. The model PSA they used was a crosslinked network of random copolymers of acrylates and acrylic acid, with an acrylic acid content between 2 and 10%. [Pg.131]

Standard-grade PSAs are usually made from styrene-butadiene rubber (SBR), natural rubber, or blends thereof in solution. In addition to rubbers, polyacrylates, polymethylacrylates, polyfvinyl ethers), polychloroprene, and polyisobutenes are often components of the system ([198], pp. 25-39). These are often modified with phenolic resins, or resins based on rosin esters, coumarones, or hydrocarbons. Phenolic resins improve temperature resistance, solvent resistance, and cohesive strength of PSA ([196], pp. 276-278). Antioxidants and tackifiers are also essential components. Sometimes the tackifier will be a lower molecular weight component of the high polymer system. The phenolic resins may be standard resoles, alkyl phenolics, or terpene-phenolic systems ([198], pp. 25-39 and 80-81). Pressure-sensitive dispersions are normally comprised of special acrylic ester copolymers with resin modifiers. The high polymer base used determines adhesive and cohesive properties of the PSA. [Pg.933]

Observable Characteristics - Physical State (as normally shipped) Liquid Color Colorless Odor. Characteristic acrylic. [Pg.58]

At low strains there is an elastic region whereas at high strains there is a nonlinear relationship between stress and strain and there is a permanent element to the strain. In the absence of any specific information for a particular plastic, design strains should normally be limited to 1%. Lower values ( 0.5%) are recommended for the more brittle thermoplastics such as acrylic, polystyrene and values of 0.2-0.3% should be used for thermosets. [Pg.19]

The enamines derived from cyclic ketones give the normal alkylated products, although there is some evidence that unstable cycloadducts are initially formed (55b). Thus the enamine (28) derived from cyclohexanone and pyrrolidine on reaction with acrylonitrile, acrylate esters, or phenyl vinyl sulfone gave the 2-alkylated cyclohexanones (63) on hydrolysis of the intermediates (31,32,55,56). These additions are sensitive to the polarity of the solvent. Thus (28) in benzene or dioxane gave an 80% yield of the... [Pg.127]

Good quality steel is used and electrozinc is preferred for washing machines. Steel is pretreated with iron phosphate for economy electrozinc with a fine crystal zinc phosphate. No primer is normally used 25-40/im of finish is applied direct to metal. The required properties are best obtained with a thermosetting acrylic or polyester/melamine-formaldehyde finish. Self-reactive acrylics are usually preferred these resins contain about 15 Vo 7V-butoxymethyl acrylamide (CH2=CH —CO —NH —CHj—O —C4H,) monomer and cure in a manner similar to butylated melamine-formaldehyde resins. Resistance or anti-corrosive properties may be upgraded by the inclusion of small amounts of epoxy resin. Application is usually by electrostatic spray application from disc or bell. Shapes are complex enough to require convected hot-air curing. Schedules of 20 min at 150-175°C are... [Pg.631]


See other pages where Normal acrylation is mentioned: [Pg.417]    [Pg.417]    [Pg.920]    [Pg.155]    [Pg.417]    [Pg.417]    [Pg.920]    [Pg.155]    [Pg.283]    [Pg.285]    [Pg.360]    [Pg.71]    [Pg.430]    [Pg.320]    [Pg.381]    [Pg.478]    [Pg.216]    [Pg.391]    [Pg.407]    [Pg.410]    [Pg.503]    [Pg.529]    [Pg.213]    [Pg.579]    [Pg.105]    [Pg.106]    [Pg.277]    [Pg.79]    [Pg.88]   
See also in sourсe #XX -- [ Pg.155 ]




SEARCH



© 2024 chempedia.info