Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethers terpenic

Alcohols Aldehydes Esters Ethyl ethers Terpenes... [Pg.1062]

Soyasaponin ag (= Soyasapogenol 3-0-glycoside 22-O-DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) ether) (terpene saponin glycoside DDMP ether)... [Pg.629]

Solubility freely soluble in ethanol (95%) soluble in ether, terpenes, and fixed oils very slightly soluble in water. Dissolves in solutions of alkali hydroxides. [Pg.180]

The Code mentions 382 synthetic additives, comprizing 69 individual flavouring substances and the following 18 chemical groups ketones, lactones, aromatic aldehydes, aromatic alcohols, esters, ethers, isothiocyanates, indole and its derivatives, fatty acids, aliphatic aldehydes, aliphatic alcohol, aliphatic hydrogen carbide aldehydes, (translation error, probably hydrocarbons), thio alcohols, thio ethers, terpene hydrocarbons, phenols, phenolethers, furfural and its derivatives. [Pg.791]

This general technique Is particularly useful for moderately fast reacting (rate constants of IS 10 11 cm3 molecule 3-sec l) polar organics (such as the higher ethers, terpenes, and... [Pg.390]

Heteroatom functionalized terpene resins are also utilized in hot melt adhesive and ink appHcations. Diels-Alder reaction of terpenic dienes or trienes with acrylates, methacrylates, or other a, P-unsaturated esters of polyhydric alcohols has been shown to yield resins with superior pressure sensitive adhesive properties relative to petroleum and unmodified polyterpene resins (107). Limonene—phenol resins, produced by the BF etherate-catalyzed condensation of 1.4—2.0 moles of limonene with 1.0 mole of phenol have been shown to impart improved tack, elongation, and tensile strength to ethylene—vinyl acetate and ethylene—methyl acrylate-based hot melt adhesive systems (108). Terpene polyol ethers have been shown to be particularly effective tackifiers in pressure sensitive adhesive appHcations (109). [Pg.357]

Of the 10 constituents which represent nearly half the oil of neroH, only linalool (10) can be said to contribute direcdy to the characteristic aroma of orange flower oil. In 1977, IFF chemists performed an in-depth analysis of this oil and identified three simple terpenic compounds, each present at less than 0.01%, a-terpenyl methyl ether [1457-68-0] (31), geranyl methyl ether [2565-82-4] (32), andhnalyl methyl ether [60763-44-2] (33) (11). The latter two compounds possess green floral-citms aromas and have been known to perfumery for some time a-terpenyl methyl ether (31) has been called the orange flower ether by IFF chemists owing to its characteristic odor. [Pg.303]

Ma.nufa.cture. The preparation of sulfuryl chloride is carried out by feeding dry sulfur dioxide and chlorine into a water-cooled glass-lined steel vessel containing a catalyst, eg, activated charcoal. Alternatively, chlorine is passed into Hquefted sulfur dioxide at ca 0°C in the presence of a dissolved catalyst, eg, camphor, a terpene hydrocarbon, an ether, or an ester. The sulfuryl chloride is purified by distillation the commercial product is typically 99 wt % pure, as measured by ASTM distillation method D850. [Pg.143]

Principal terpene alcohol components of piae oils are a-terpiueol, y-terpiueol, P-terpiueol, a-fenchol, bomeol, terpiuen-l-ol, and terpiaen-4-ol. The ethers, 1,4- and 1,8-ciaeole, are also formed by cycli2ation of the p-v( enthane-1,4- and 1,8-diols. The bicycHc alcohols, a-fenchol [512-13-0] (61) and bomeol (62), are also formed by the Wagner-Meerweiu rearrangement of the piaanyl carbonium ion and subsequent hydration. Bomeol is i7(9-l,7,7-trimethylbicyclo[2.2.1]heptan-2-ol [507-70-0]. Many other components of piae oils are also found, depending on the source of the turpentine used and the method of production. [Pg.419]

Standard-grade PSAs are usually made from styrene-butadiene rubber (SBR), natural rubber, or blends thereof in solution. In addition to rubbers, polyacrylates, polymethylacrylates, polyfvinyl ethers), polychloroprene, and polyisobutenes are often components of the system ([198], pp. 25-39). These are often modified with phenolic resins, or resins based on rosin esters, coumarones, or hydrocarbons. Phenolic resins improve temperature resistance, solvent resistance, and cohesive strength of PSA ([196], pp. 276-278). Antioxidants and tackifiers are also essential components. Sometimes the tackifier will be a lower molecular weight component of the high polymer system. The phenolic resins may be standard resoles, alkyl phenolics, or terpene-phenolic systems ([198], pp. 25-39 and 80-81). Pressure-sensitive dispersions are normally comprised of special acrylic ester copolymers with resin modifiers. The high polymer base used determines adhesive and cohesive properties of the PSA. [Pg.933]

WojQo 1-4652) in absolute ethereal solution was allowed to react with palladium black. After a few hours hydrogen was passed into the liquid at ordinary temperature, giving rise to a terpene possessing the following... [Pg.49]

The identification of camphene is best carried out by its conversion into isobomeol under the influence of acetic acid in the presence of sulphuric acid. In order to effect this conversion, 100 grams of the fraction containing the terpene in substantial quantity are mixed with 250 grains of glacial acetic acid and 10 grams of 50 per cent, sulphuric acid. Tne mixture is heated for two to three hours on a water-bath to a temperature of 50° to 60°. At first the liquid separates into two layers, bat soon becomes homogeneous and takes on a pale red colour. Excess of water is added, and the oil which is precipitated, and which contains the isobomeol in the form of its acetate, is well washed with water repeatedly. It is then saponified by heating with alcoholic potash solution on a water-bath. The liquid is then evaporated and extracted with water, and the residue recrystallised from petroleum ether. [Pg.51]

To prepare sabinenic acid for the identification of the terpene, Wallach operates as follows 10 grams of the crude terpene are mixed with the theoretical amount of potassium permanganate in water at ice temperature. The oxide of manganese is filtered off, the liquid rendered acid and extracted with ether, and the ethereal solution shaken with caustic soda solution. The sodium salt is very sparingly soluble, and is precipitated, collected, and decomposed with dilute sulphuric acid and purified by a further solution in ether. It must be well dried in a desiccator before its melting-point is determined. Sabinene has the following constitution —... [Pg.57]

Five parts of the terpene, 7 of amyl nitrite, and 12 of glacial acetic acid are mixed and cooled with ice and salt, and a mixture of 6 parts of hydrochloric acid and 6 parts of glacial acetic acid added in small quantities at a time. Five parts of alcohol are then added and the mixture allowed to stand in a freezing mixture for a itime. A mass of crystals separates, which consists of the crude nitrosochlorides. This is filtered off and washed with alcohol. When perfectly dry 100 grams of the crystals are digested with 200 c.c. of chloroform for a few moments and at once filtered. The chloroform dissolves a-nitrosochloride, which is precipitated by the addition of excess of methyl alcohol. The crude compound is filtered off, dried and digested with anhydrous ether for... [Pg.60]

Sylvestrene nitrosochloride, CjoHj,. NOCl, is prepared from pure sylvestrene, regenerated from the dihydrochloride in the following manner Four volumes of the terpene are dissolved in six of amyl nitrite and five volumes of strong hydrochloric acid are added, with constant shaking. The heavy oil which separates is shaken with a little ethyl alcohol, when it solidifies, and can be purified by dissolving it in chloroform and precipitating it with petroleum ether. It is finally recrystallised from methyl alcohol, when it melts at 106° to 107°. [Pg.66]

Some representative Claisen rearrangements are shown in Scheme 6.14. Entry 1 illustrates the application of the Claisen rearrangement in the introduction of a substituent at the junction of two six-membered rings. Introduction of a substituent at this type of position is frequently necessary in the synthesis of steroids and terpenes. In Entry 2, formation and rearrangement of a 2-propenyl ether leads to formation of a methyl ketone. Entry 3 illustrates the use of 3-methoxyisoprene to form the allylic ether. The rearrangement of this type of ether leads to introduction of isoprene structural units into the reaction product. Entry 4 involves an allylic ether prepared by O-alkylation of a (3-keto enolate. Entry 5 was used in the course of synthesis of a diterpene lactone. Entry 6 is a case in which PdCl2 catalyzes both the formation and rearrangement of the reactant. [Pg.562]

The only other functional group is the conjugated unsaturated ester. This functionality is remote from the stereocenters and the ketone functionality, and does not play a key role in most of the reported syntheses. Most of the syntheses use cyclic starting materials. Those in Schemes 13.4 and 13.5 lead back to a para-substituted aromatic ether. The syntheses in Schemes 13.7 and 13.8 begin with an accessible terpene intermediate. The syntheses in Schemes 13.10 and 13.11 start with cyclohexenone. Scheme 13.3 presents a retrosynthetic analysis leading to the key intermediates used for the syntheses in... [Pg.1174]

Coffee oil is generally described as the petroleum ether-soluble fraction from green coffee beans. Arabica coffees contain 11.1 to 13.6% oil, whereas Robusta coffees contain only 4.4 to 4.8% oil.106 Triglycerides constitute 79% of this oil, terpene esters 17%, and the remaining 4% is contributed by sterols, free terpenes, tocopherols, and as yet unknown... [Pg.142]

Ethereal extracts of pulp exploded during or after concentration by evaporation. Although the ether used for the extraction previously had been freed from peroxides by treatment with cerium(III) hydroxide, the ethereal extracts had been stored for 3 weeks before concentration was effected. (During this time the ether and/or extracted terpenes would be expected to again form peroxides, but no attempt seems to have been made to test for, or to remove them before distillation was begun). [Pg.565]

Classical organic chemistry provides a wide variety of potential analytes for electron ionization, the only limitation being that the analyte should be accessible to evaporation or sublimation without significant thermal decomposition. These requirements are usually met by saturated and unsaturated aliphatic and aromatic hydrocarbons and their derivatives such as halides, ethers, acids, esters, amines, amides etc. Heterocycles generally yield useful El spectra, and flavones, steroids, terpenes and comparable compounds can successfully be analyzed by El, too. Therefore, El represents the standard method for such kind of samples. [Pg.217]

Soluble in ethanol, ether (Weast, 1986), benzene, chloroform, acetone, petroleum ether, fixed oils, terpenes, and aqueous alkaline solutions (Windholz et al., 1983). Also soluble in cyclic ethers such as tetrahydrofuran. [Pg.285]

A mammal may emit many volatile compounds. Humans, for instance, give off hundreds of volatiles, many of them chemically identified (Ellin etal., 1974). The volatiles include many classes of compound such as acids (gerbil), ketones, lactones, sulfides (golden hamster), phenolics (beaver, elephant), acetates (mouse), terpenes (elephant), butyrate esters (tamarins), among others. The human samples mentioned before contained hydrocarbons, unsaturated hydrocarbons, alcohols, acids, ketones, aldehydes, esters, nitriles, aromatics, heterocyclics, sulfur compounds, ethers, and halogenated hydrocarbons. Sulfur compounds are found in carnivores, such as foxes, coyotes, or mustelids. The major volatile compound in urine of female coyotes, Canis latrans, is methyl 3-methylhut-3-enyl sulfide, which accounts for at least 50% of all urinary volatiles (Schultz etal, 1988). [Pg.23]

Closely related to the synthetic work reported in the previous section is the incorporation (131) of a 2,5-anhydro-3,4Hdi-0-methyl-D-mannitol residue (Figure 15) into the 18-crown-6 derivative d-91. Other derivatives of D-mannitol that have been built into crown ether receptors include l,4 3,6-dianhydro-D-maiuiitol (132), l,3 4,6-di-0-methylene-D-marmitol (13 134), and 1,3 4,6-di-O-benzylidene-D-mannitol (134). Examples of chiral crown compounds containing these residues include dd-92, dd-93, d-94, and d-95. Although not derived from carbohydrates—but rather (135) from the terpene, (-t-)-pulegone—... [Pg.244]

The first suitable representative of this class of substances, 6-methyl-5-heptene-2-one, was investigated by Neuberg and Lewite. This ketone, which is a natural constituent of ethereal oils, can also be obtained by degradation of various aliphatic and cyclic terpenes. By means of fermenting yeast it is converted to 6-methyl-5-heptene-2-ol,... [Pg.82]

After separation of neroli oil, the aqueous layer of the steam distillate, known as orange blossom water, is extracted with suitable solvents (e.g., petroleum ether). Evaporation gives orange flower water absolute (absolue de Teau de fleurs d oranger), which is a dark brown-red liquid. It contains less terpene hydrocarbons and correspondingly more polar compounds than neroli oil. [Pg.207]


See other pages where Ethers terpenic is mentioned: [Pg.351]    [Pg.1623]    [Pg.89]    [Pg.351]    [Pg.1623]    [Pg.89]    [Pg.13]    [Pg.393]    [Pg.52]    [Pg.468]    [Pg.69]    [Pg.115]    [Pg.147]    [Pg.33]    [Pg.340]    [Pg.218]    [Pg.16]    [Pg.141]    [Pg.288]    [Pg.603]    [Pg.79]    [Pg.165]    [Pg.204]    [Pg.849]    [Pg.260]    [Pg.718]   
See also in sourсe #XX -- [ Pg.524 ]




SEARCH



© 2024 chempedia.info