Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethane reactions atmosphere

Paraldehyde (2,4,6-trimethyl-l, 3,5-trioxane) was claimed to behave in a similar way [582], An early German patent, published after Eckenroth s note [582], claimed that no reaction occurs between COClj and aldehydes at normal temperatures [612], and attempts to repeat Eckenroth s preparation [582] have not been successful [1763]. However, by combining the vapours of phosgene and ethanal at atmospheric pressure in a flow system over an activated charcoal catalyst, 1,1 -dichloroethane and carbon dioxide are found to be co-produced, especially in the temperature range of 150-200 "C [1753,ICI98,ICI99]. It was confirmed that no reaction occurs in the absence of a catalyst between 25 and 400 C [1763]. [Pg.479]

The amount of carbon deposited on nickel foils following reaction in ethane at atmospheric pressure and temperatures from 870 to 1070 K is presented in Table 1. Examination of these data shows that titanium oxide provides an effective barrier towards carbon deposition at 870 K with or without hydrogen pretreatment however, at higher temperatures only titanium oxide reduced in hydrogen exhibits an inhibiting effect. [Pg.104]

In some rare cases, heavier hydrocarbons are formed, for example, benzene. The process was discovered in the early 1980s [5,335]. Due to a large number of works, the OCM has become one of the most thoroughly studied reactions of the oxidative conversion of methane, and in particular, its essentially homogeneous—heterogeneous nature has been experimentally demonstrated. Methyl radicals CH3 formed by e catalytic reaction escape into the bulk of the reactor. In the temperature range optimal for the OCM, 600—950 °C (Fig. 12.2), at an oxygen concentration below 20% and atmospheric pressure, the main reaction of methyl radical is recombination to form ethane (reaction (12.4)). [Pg.259]

In a polluted or urban atmosphere, O formation by the CH oxidation mechanism is overshadowed by the oxidation of other VOCs. Seed OH can be produced from reactions 4 and 5, but the photodisassociation of carbonyls and nitrous acid [7782-77-6] HNO2, (formed from the reaction of OH + NO and other reactions) are also important sources of OH ia polluted environments. An imperfect, but useful, measure of the rate of O formation by VOC oxidation is the rate of the initial OH-VOC reaction, shown ia Table 4 relative to the OH-CH rate for some commonly occurring VOCs. Also given are the median VOC concentrations. Shown for comparison are the relative reaction rates for two VOC species that are emitted by vegetation isoprene and a-piuene. In general, internally bonded olefins are the most reactive, followed ia decreasiag order by terminally bonded olefins, multi alkyl aromatics, monoalkyl aromatics, C and higher paraffins, C2—C paraffins, benzene, acetylene, and ethane. [Pg.370]

Irradiation of ethyleneimine (341,342) with light of short wavelength ia the gas phase has been carried out direcdy and with sensitization (343—349). Photolysis products found were hydrogen, nitrogen, ethylene, ammonium, saturated hydrocarbons (methane, ethane, propane, / -butane), and the dimer of the ethyleneimino radical. The nature and the amount of the reaction products is highly dependent on the conditions used. For example, the photoproducts identified ia a fast flow photoreactor iacluded hydrocyanic acid and acetonitrile (345), ia addition to those found ia a steady state system. The reaction of hydrogen radicals with ethyleneimine results ia the formation of hydrocyanic acid ia addition to methane (350). Important processes ia the photolysis of ethyleneimine are nitrene extmsion and homolysis of the N—H bond, as suggested and simulated by ab initio SCF calculations (351). The occurrence of ethyleneimine as an iatermediate ia the photolytic formation of hydrocyanic acid from acetylene and ammonia ia the atmosphere of the planet Jupiter has been postulated (352), but is disputed (353). [Pg.11]

Miscellaneous Reactions. Ethylene oxide is considered an environmental pollutant. A study has determined the half-life of ethylene oxide ia the atmosphere (82,83). Autodecomposition of ethylene oxide vapor occurs at - 500° C at 101.3 kPa (1 atm) to give methane, carbon monoxide, hydrogen, and ethane (84—86). [Pg.454]

It has been generally accepted that the thermal decomposition of paraffinic hydrocarbons proceeds via a free radical chain mechanism [2], In order to explain the different product distributions obtained in terms of experimental conditions (temperature, pressure), two mechanisms were proposed. The first one was by Kossiakoff and Rice [3], This R-K model comes from the studies of low molecular weight alkanes at high temperature (> 600 °C) and atmospheric pressure. In these conditions, the unimolecular reactions are favoured. The alkyl radicals undergo successive decomposition by [3-scission, the main primary products are methane, ethane and 1-alkenes [4], The second one was proposed by Fabuss, Smith and Satterfield [5]. It is adapted to low temperature (< 450 °C) but high pressure (> 100 bar). In this case, the bimolecular reactions are favoured (radical addition, hydrogen abstraction). Thus, an equimolar distribution ofn-alkanes and 1-alkenes is obtained. [Pg.350]

Catalytic experiments in the fixed-bed reactor were carried out at atmospheric pressure and a reaction temperature of 350 °C, ethane/ toiuene °f 4.3 at a WHSV (ethane and toluene) of 4.3 h 1. The catalytic experiments in the stainless-steel batch reactor were performed at 250 °C, a pressure of 70 bar and ethane/wtoluene 0.6, under vigorous stirring for 18 hours. [Pg.366]

Vacher R., Le Due E., and Fitaire M. (2000). Clustering reactions of HCNH+, HCNH+ (N2) and HCNH+ (CH4) with ethane application to Titan atmosphere. Planetary and Space Science 48 237-247... [Pg.332]

The gaseous atmosphere was then vented through a trap at -78° (to remove most of the benzene vapor) into an evacuated vessel. Samples were removed by gas-tight syringe and injected into a Hewlett-Packard 5790 gas chromatograph, equipped with a U ft, 1/8 in Porapak P column and a flame ionization detector. Use of known samples of hydrocarbons (methane and ethane) established that the minimum detectable amounts of product by this procedure were about 0.5-1 0 % (based on starting Nb complex). Several of the reactions (Mo(CO)g, W(C0)g and Ru (CO) p) gave small amounts (around 1-2 %) of these alkanes only with Cr(C0)g was a substantial yield of hydrocarbon product consistently observed (see below). [Pg.255]

A palladium phosphine complex [e.g., BCPE = l,2-bis(l,5-cyclooctylenephos-phino)ethane] was also reported to produce propanediols and n-propanol from glycerol at 443 K under 6 MPa CO/H2 atmosphere in acidic conditions, n-Propanol is the dominant product, while a slight preference for the formation of propane-1,3-diol is seen in the diol fraction. Reactions were performed at different temperatures in the range 413-448 K. Since acrolein was monitored at high temperature, a reaction network was proposed following a sequential dehydration/hydrogenation pathway [20]. [Pg.249]

Of course, all the appropriate higher-temperature reaction paths for H2 and CO discussed in the previous sections must be included. Again, note that when X is an H atom or OH radical, molecular hydrogen (H2) or water forms from reaction (3.84). As previously stated, the system is not complete because sufficient ethane forms so that its oxidation path must be a consideration. For example, in atmospheric-pressure methane-air flames, Wamatz [24, 25] has estimated that for lean stoichiometric systems about 30% of methyl radicals recombine to form ethane, and for fuel-rich systems the percentage can rise as high as 80%. Essentially, then, there are two parallel oxidation paths in the methane system one via the oxidation of methyl radicals and the other via the oxidation of ethane. Again, it is worthy of note that reaction (3.84) with hydroxyl is faster than reaction (3.44), so that early in the methane system CO accumulates later, when the CO concentration rises, it effectively competes with methane for hydroxyl radicals and the fuel consumption rate is slowed. [Pg.116]

Titanium dioxide suspended in an aqueous solution and irradiated with UV light X = 365 nm) converted benzene to carbon dioxide at a significant rate (Matthews, 1986). Irradiation of benzene in an aqueous solution yields mucondialdehyde. Photolysis of benzene vapor at 1849-2000 A yields ethylene, hydrogen, methane, ethane, toluene, and a polymer resembling cuprene. Other photolysis products reported under different conditions include fulvene, acetylene, substituted trienes (Howard, 1990), phenol, 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, 2,6-dinitro-phenol, nitrobenzene, formic acid, and peroxyacetyl nitrate (Calvert and Pitts, 1966). Under atmospheric conditions, the gas-phase reaction with OH radicals and nitrogen oxides resulted in the formation of phenol and nitrobenzene (Atkinson, 1990). Schwarz and Wasik (1976) reported a fluorescence quantum yield of 5.3 x 10" for benzene in water. [Pg.126]

Chemical/Physical. Anticipated products from the reaction of 1,4-dioxane with ozone or OH radicals in the atmosphere are glyoxylic acid, oxygenated formates, and OHCOCH2CH2OCHO (Cupitt, 1980). Storage of 1,4-dioxane in the presence of air resulted in the formation of 1,2-ethanediol monoformate and 1,2-ethane diformate (Jewett and Lawless, 1980). Stefan and Bolton... [Pg.519]

The chlorofluorocarbon compounds of methane and ethane are collectively known as freons. They are extremely stable, unreactlve, non-toxic, non-corrosive and easily liquefiable gases. Freon 12 (CCI2F2) Is one of the most common freons In Industrial use. It Is manufactured from tetrachloromethane by Swarts reaction. These are usually produced for aerosol propellants, refrigeration and air conditioning purposes. By 1974, total freon production In the world was about 2 billion pounds annually. Most freon, even that used In refrigeration, eventually makes Its way Into the atmosphere where It diffuses unchanged Into the stratosphere. In stratosphere, freon Is able to Initiate radical chain reactions that can upset the natural ozone balance (Unit 14, Class XI). [Pg.40]

The incremental reactivity of a VOC is the product of two fundamental factors, its kinetic reactivity and its mechanistic reactivity. The former reflects its rate of reaction, particularly with the OH radical, which, as we have seen, with some important exceptions (ozonolysis and photolysis of certain VOCs) initiates most atmospheric oxidations. Table 16.8, for example, also shows the rate constants for reaction of CO and the individual VOC with OH at 298 K. For many compounds, e.g., propene vs ethane, the faster the initial attack of OH on the VOC, the greater the IR. However, the second factor, reflecting the oxidation mechanism, can be determining in some cases as, for example, discussed earlier for benzaldehyde. For a detailed discussion of the factors affecting kinetic and mechanistic reactivities, based on environmental chamber measurements combined with modeling, see Carter et al. (1995) and Carter (1995). [Pg.910]

H. R. Linden High temperature pyrolysis of coal with high energy sources seems to follow readily predictable paths similar to hydrocarbon pyrolysis. The effects of pressure, gas atmosphere, reaction time, and the volatile matter" content of the coal bear the same relationship to yields of methane, ethane, ethylene, acetylene, and hydrogen as for simple hydrocarbons. Effective reaction temperature, although not directly measurable, could be estimated by means of a suitable chemical thermometer, such as the C-. H-. -C. H4-H. system which approaches equilibrium very rapidly. As Dr. Given also noted, equating the volatile matter" to the reactive portion of the coal is an oversimplification but adequate for empirical purposes the C H ratio of the coal would probably be more suitable. [Pg.726]


See other pages where Ethane reactions atmosphere is mentioned: [Pg.1024]    [Pg.435]    [Pg.999]    [Pg.11]    [Pg.375]    [Pg.173]    [Pg.689]    [Pg.258]    [Pg.260]    [Pg.263]    [Pg.350]    [Pg.154]    [Pg.165]    [Pg.25]    [Pg.129]    [Pg.146]    [Pg.47]    [Pg.218]    [Pg.25]    [Pg.96]    [Pg.753]    [Pg.509]    [Pg.50]    [Pg.22]    [Pg.528]    [Pg.42]    [Pg.36]    [Pg.1]    [Pg.353]    [Pg.1001]    [Pg.999]    [Pg.92]    [Pg.381]   
See also in sourсe #XX -- [ Pg.229 ]




SEARCH



Atmospheric reactions

Ethane reaction

© 2024 chempedia.info