Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts activated charcoal

In a technically valuable variant the gas mixture streaming into a conical reaction vessel maintains the suspended catalyst (active charcoal) in constant motion. This has the advantage of avoiding disturbances due to separation of carbon or tarry by-products such as occur in purely thermal or catalytic chlorination on fixed bed catalysts.324e... [Pg.144]

On the other hand, if the 3 1 ortho to para mixture at high temperature is cooled in the presence of a catalyst (activated charcoal), which brings the reaction 0-H2 P-H2 to... [Pg.736]

At 25 C, hydrogen is composed of 3 parts of ortho-hydrogen and one part of para (of opposed spins) at low temperature on a catalyst (active charcoal) the gas can be enriched in pam-hydrogen. On the other hand, at 923K the para is converted into the ortho by a reaction of f order, which has the following mechanism ... [Pg.99]

Fig. XVII-29. Nitrogen isotherms the volume adsorbed is plotted on an arbitrary scale. The upper scale shows pore radii corresponding to various relative pressures. Samples A, Oulton catalyst B, bone char number 452 C, activated charcoal F, Alumina catalyst F12 G, porous glass S, silica aerogel. (From Ref. 196). Fig. XVII-29. Nitrogen isotherms the volume adsorbed is plotted on an arbitrary scale. The upper scale shows pore radii corresponding to various relative pressures. Samples A, Oulton catalyst B, bone char number 452 C, activated charcoal F, Alumina catalyst F12 G, porous glass S, silica aerogel. (From Ref. 196).
Ma.nufa.cture. The preparation of sulfuryl chloride is carried out by feeding dry sulfur dioxide and chlorine into a water-cooled glass-lined steel vessel containing a catalyst, eg, activated charcoal. Alternatively, chlorine is passed into Hquefted sulfur dioxide at ca 0°C in the presence of a dissolved catalyst, eg, camphor, a terpene hydrocarbon, an ether, or an ester. The sulfuryl chloride is purified by distillation the commercial product is typically 99 wt % pure, as measured by ASTM distillation method D850. [Pg.143]

Ethyl Acetate. Catalysts proposed for the vapor-phase production of ethyl acetate include siUca gel, zirconium dioxide, activated charcoal, and potassium hydrogen sulfate. More recendy, phosphoric-acid-treated coal (65) and calcium phosphate (66) catalysts have been described. [Pg.380]

Industrially it is now made by direct gas-phase oxidation of HCN with O2 (over a silver catalyst), or with CI2 (over activated charcoal), or NO2 (over CaO glass). (CN)2 is fairly stable in H2O, EtOH and Et20 but slowly decomposes in solution to give HCN, HNCO, (H2N)2C0 and H2NC(0)C(0)NH2 (oxamide). Alkaline solutions yield CN and (OCN) (cf. halogens). [Pg.321]

We initially tested Candida antarctica lipase using imidazolium salt as solvent because CAL was found to be the best enzyme to resolve our model substrate 5-phenyl-l-penten-3-ol (la) the acylation rate was strongly dependent on the anionic part of the solvents. The best results were recorded when [bmim][BF4] was employed as the solvent, and the reaction rate was nearly equal to that of the reference reaction in diisopropyl ether. The second choice of solvent was [bmim][PFg]. On the contrary, a significant drop in the reaction rate was obtained when the reaction was carried out in TFA salt or OTf salt. From these results, we concluded that BF4 salt and PFg salt were suitable solvents for the present lipase-catalyzed reaction. Acylation of la was accomplished by these four enzymes Candida antarctica lipase, lipase QL from Alcaligenes, Lipase PS from Burkholderia cepacia and Candida rugosa lipase. In contrast, no reaction took place when PPL or PLE was used as catalyst in this solvent system. These results were established in March 2000 but we encountered a serious problem in that the results were significantly dependent on the lot of the ILs that we prepared ourselves. The problem was very serious because sometimes the reaction did not proceed at all. So we attempted to purify the ILs and established a very successful procedure (Fig. 3) the salt was first washed with a mixed solvent of hexane and ethyl acetate (2 1 or 4 1), treated with activated charcoal and passed into activated alumina neutral type I as an acetone solution. It was evaporated and dried under reduced... [Pg.5]

Platinum catalysts were prepared by ion-exchange of activated charcoal. A powdered support was used for batch experiments (CECA SOS) and a granular form (Norit Rox 0.8) was employed in the continuous reactor. Oxidised sites on the surface of the support were created by treatment with aqueous sodium hypochlorite (3%) and ion-exchange of the associated protons with Pt(NH3)42+ ions was performed as described previously [13,14]. The palladium catalyst mentioned in section 3.1 was prepared by impregnation, as described in [8]. Bimetallic PtBi/C catalysts were prepared by two methods (1) bismuth was deposited onto a platinum catalyst, previously prepared by the exchange method outlined above, using the surface redox reaction ... [Pg.162]

D. 2,3-Diamino pyridine (Note 12). In an apparatus for catalytic hydrogenation (Note 13) 56.4 g. (0.3 mole) of 2,3-diamino-5-bromopyridine suspended in 300 ml. of 4% sodium hydroxide solution is shaken with hydrogen in the presence of 1.0 g. of 5% palladized strontium carbonate (Note 14). When absorption of hydrogen is completed, the catalyst is removed by filtration, and, after saturation with potassium carbonate (about 330 g. is required), the resulting slushy mixture is extracted continuously with ether until all the precipitate completely disappears (usually about 18 hours, but this depends on the efficiency of the extraction apparatus). The ether is removed by distillation, and the residue of crude 2,3-diaminopyridine is recrystallized from benzene (about 600 ml. is required) using 3 g. of activated charcoal and filtering rapidly through a preheated Buchner funnel. The yield of 2,3-diaminopyridine, obtained as colorless needles, m.p. 115-116°, pKa 6.84, is 25.5-28.0 g. (78-86%) (Note 15). [Pg.19]

U.S. producers of, 4 748t Activated carbon adsorption, as advanced wastewater treatment, 25 909 Activated catalyst layer, 70 40-42 Activated charcoal, 73 461 Activated coke, for SO and NO removal, 77 720... [Pg.14]

After heating, the EB is mixed with superheated steam and fed to the first stage reactor. Both the first and second stage reactors are packed with a catalyst of metal oxide deposited on an activated charcoal or alumina pellets. Iron oxide, sometimes combined with chromium oxide or potassium carbonate, is commonly used. [Pg.128]

In order to increase the contact of a catalyst with hydrogen and the compounds to be hydrogenated platinum (or other metals) is (are) precipitated on materials having large surface areas such as activated charcoal, silica gel, alumina, calcium carbonate, barium sulfate and others. Such supported catalysts are prepared by hydrogenation of solutions of the metal salts, e.g. chloroplatinic acid, in aqueous suspensions of activated charcoal or other solid substrates [28. Supported catalysts which usually contain 5, 10 or 30 weight percent of platinum are very active, and frequently pyrophoric. [Pg.6]

Isolation of the products is usually carried out by filtration. Suction filtration is faster and preferable to gravity filtration. When pyrophoric noble metal catalysts and Raney nickel are filtered with suction the suction must be stopped before the catalyst on the filter paper becomes dry. Otherwise it can ignite and cause fire. Where feasible centrifugation and decantation should be used for the separation of the catalyst. Sometimes the filtrate contains colloidal catalyst which has passed through the filter paper. Stirring of such filtrate with activated charcoal followed by another filtration usually solves this problem. Evaporation of the filtrate and crystallization or distillation of the residue completes the isolation. [Pg.13]

Hydrogen bromide gas may be produced by combustion of hydrogen in bromine vapor at 37.5°C using a catalyst such as platinized asbestos or platinized silica gel. Unreacted free bromine is removed from the product by passing the gaseous product mixture over hot activated charcoal. Hydrogen bromide formed may be absorbed in water to obtain the acid or may be cooled and liquefied for shipment in cylinders. [Pg.356]

III,C, isomerization often accompanies hydroformylation. It has, however, been found that [(PhCN)2PdCl2] absorbed onto silica gel is 100 times more active for the isomerization of a-olefins, such as 1-heptene, than is the same complex alone (116). This implies some specific role for the silica gel. Attempts to use rhodium(III) chloride absorbed onto silica gel, alumina, activated charcoal, and diatomaceous earth as a-olefin isomerization catalysts showed that all these catalysts were unstable even at room temperature (100). [Pg.228]

Laszlo7 pointed out that solids of fractal dimension D near 2.0 are usually more efficient catalysts than those of D near 3.0. An adsorbed species diffusing across the surface of a catalyst will find a target much more quickly (i.e., catalysis will be more efficient) in space of dimension near 2 than of D near 3. We find, for example, that catalytic activities of variously prepared activated charcoals increase as we go from D = 3.0 to D = 1.9. [Pg.119]

The interest in palladium-based catalysts is due to the double bond oxyhydration capacity of palladium, unique among the noble metals, and well known from the Wacker process. Fuyimoto and Kunugi [119] report that palladium salts on active charcoal are excellent catalysts for the oxidation of olefins, particularly ethylene but the higher olefins as well. A selectivity of 89% with respect to acetone beside 10% aldehyde production is obtained at a conversion level of 27%, using excess water and a very low temperature (105°C). Careful analysis of the charcoal does not indicate that metal oxide impurities are of importance. [Pg.164]


See other pages where Catalysts activated charcoal is mentioned: [Pg.691]    [Pg.98]    [Pg.100]    [Pg.691]    [Pg.98]    [Pg.100]    [Pg.165]    [Pg.88]    [Pg.407]    [Pg.24]    [Pg.694]    [Pg.1123]    [Pg.158]    [Pg.630]    [Pg.309]    [Pg.373]    [Pg.296]    [Pg.320]    [Pg.132]    [Pg.165]    [Pg.390]    [Pg.35]    [Pg.219]    [Pg.202]    [Pg.203]    [Pg.366]    [Pg.337]    [Pg.528]    [Pg.140]    [Pg.223]    [Pg.133]    [Pg.180]    [Pg.87]    [Pg.506]   
See also in sourсe #XX -- [ Pg.378 ]

See also in sourсe #XX -- [ Pg.428 ]




SEARCH



Activated charcoal

Charcoal

Charcoal catalyst

Charcoal, activation

© 2024 chempedia.info