Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Esters, active water-soluble

Fig. 6.22.B Synthesis ofrc-N2Sp-antihody by formation of " Tc-4,. i-bis(thioacetamido)pcntanoatc, which is con cited to an active ester by water-soluble carbodiimide and finally conjugated to antibody (Ab) via acylation of amino groups [195]... Fig. 6.22.B Synthesis ofrc-N2Sp-antihody by formation of " Tc-4,. i-bis(thioacetamido)pcntanoatc, which is con cited to an active ester by water-soluble carbodiimide and finally conjugated to antibody (Ab) via acylation of amino groups [195]...
Ketopregnan-21-oic Acids, the 17(3-Carboxy Androstanes, and the D-Homocorticoids. In the course of studies on the metabohsm of fluocoitolone (103) the formation of the water-soluble carboxyhc acid (105, R = H) was reported. As a free 21-hydroxyl is not necessary for antiinflammatory activity, it was concluded that the esters (105, R = alkyl) of the preceding metabohte would possess antiinflammatory activity on topical administration but would be devoid of systemic activity when hydrolysis to the free acid occurs followed by... [Pg.106]

Although both estrone and estradiol are available for replacement therapy, they suffer the disadvantage of poor activity on oral administration and short duration of action even when administered parenterally, because of ready metabolic disposition. In order to overcome these deficiencies, there was developed a series of esters of estradiol with long-chain fatty acids. These esters are oil-soluble and correspondingly water-insoluble compounds. [Pg.161]

Lippi et. al (87) and Dirstine (88) circumvented titration by converting the liberated fatty acids into copper salts, which after extraction in chloroform are reacted with diethyldithio-carbamate to form a colored complex which is measured photometrically. While the end point appears to be more sensitive than the pH end point determination, the advantages are outweighed by the additional steps of solvent extraction, centrifugation and incomplete extraction when low concentrations of copper salts are present. Other substrates used for the measurement of lipase activity have been tributyrin ( ), phenyl laurate (90), p-nit ro-pheny1-stearate and 3-naphthyl laurate (91). It has been shown that these substrates are hydrolyzed by esterases and thus lack specificity for lipase. Studies on patients with pancreatitis indicate olive oil emulsion is definitely superior to water soluble esters as substrates for measuring serum lipase activity. [Pg.213]

Amphotericin B is particularly effective against systemic infections caused by C. albicans and Cryptococcus neoformans. It is poorly absorbed from the gastrointestinal tract and is thus usually administered by intravenous injection under strict medical supervision. Amphotericin B methyl ester (Fig. 5.15C) is water-soluble, unlike amphotericin B itself, and can be administered intravenously as a solution. The two forms have equal antifungal activity but higher peak serum levels are obtained with the ester. Although the ester is claimed to be less toxic, neurological effects have been observed. An ascorbate salt has recently been described which is water-soluble, of similar activity and less toxic. [Pg.114]

An unusual enhancement of catalytic activity in a two-phase system has been reported by Fremy et al. (1998) for the hydroformylation of acrylic esters using Rh complex of TPTS as catalyst. Even though acrylic esters have reasonable solubility in water, rate enhancements in two-phase systems by a factor of 2 to 14 have been reported. It seems that water is not an inert solvent but also acts as a reactant or a co-ordinating solvent which can modify elementary steps of the catalytic cycle (Cornilis, 1997). [Pg.142]

In 1958 Sarda and Desnuelle [79] discovered the lipase activation at the interfaces. They observed that porcine pancreatic lipase in aqueous solution was activated some 10-fold at hydrophobic interfaces which were created by poorly water-soluble substrates. An artificial interface created in the presence of organic solvent can also increase the activity of the lipase. This interfacial activation was hypothesized to be due to a dehydration of the ester substrate at the interface [80], or enzyme conformational change resulting from the adsorption of the lipase onto a hydrophobic interface [42,81,82]. [Pg.567]

PARABEN ESTERS Typical use concentrations 0.1 - 0.3% Low toxicity Dermatologically safe at typical use concentrations Over 70 years widespread use with an extremely low incidence rate of skin response GRAS (Generally Recognised As Safe) in the USA Stable and active over a wide pH range Stable to heat Combinations of esters exhibit increased activity Approved for cosmetic applications worldwide Low water solubility Some nonionics inactivate to varying degrees May require addition of other preservatives, eg. bactericides Incompatible with some proteins... [Pg.148]

The ability of NB-355 to stimulate locomotor activity and induce dyskinesia in MPTP-treated squirrel monkeys was studied (MPTP induces parkinsonism) [9], NB-355 was similar to L-dopa in stimulating locomotor activity. Furthermore, NB-355 induced less severe dyskinesia than was seen with L-dopa. Some other prodrugs of L-dopa include short-chain alkyl esters (methyl, ethyl, isopropyl, butyl, hydroxypropyl, and hydroxybutyl) intended for rectal absorption [10], These esters of L-dopa have high water solubility (>600 mg/mL). Initial bioavailability studies indicated that all of these esters, with the exception of the hydroxypropyl ester, resulted in significantly greater bioavailability than that obtained with L-dopa itself. However, given the high level of esterase activity in the small intestine, the use of these compounds is limited to rectal administration. [Pg.203]

Poly(HASCL) depolymerases are able to bind to poly(3HB)-granules. This ability is specific because poly(3HB) depolymerases do not bind to chitin or to (crystalline) cellulose [56,57]. The poly(3HB)-binding ability is lost in truncated proteins which lack the C-terminal domain of about 60 amino acids, and these modified enzymes do not hydrolyze poly(3HB). However, the catalytic domain is unaffected since the activity with water-soluble oligomers of 3-hy-droxybutyrate or with artificial water-soluble substrates such as p-nitrophenyl-esters is unaffected [55, 56, 58, 59]. Obviously, the C-terminal domain of poly(3HB) depolymerases is responsible and sufficient for poly(3HB)-binding [poly(3HB)-binding domain]. These results are in agreement ... [Pg.301]

BNCT sensitisers are designed with neutron capture in mind, but those that are porphyrin/ phthalocyanine-based may show PDT activity. An example is the disodium (or dipotassium) salt of the tetrakis-carborane ester (58) derived from 3,8-bis(l,2-dihydroxyethyl)deuteroporphyrin.298 This is water soluble and tumor selective, showing high tumor/normal brain ratios.299 Photophysical properties are similar to other water-soluble porphyrins in rat glioma cells, specific localization in mitochondria is observed.300... [Pg.987]

The carbodiimide of choice used to couple cystamine to carboxylate- or phosphate-containing molecules is most often the water-soluble carbodiimide, EDC hydrochloride Chapter 3, Section 1.1). This reagent rapidly reacts with carboxylates or phosphates to form an active ester intermediate, which is highly reactive toward primary amines. The reaction is efficient from pH 4.7 to 7.5, and a variety of buffers may be used, providing they don t contain competing groups. [Pg.84]

In aqueous solutions, the easiest method for forming this type of bond is to use the water-soluble carbodiimide EDC (Chapter 3, Section 1.1). For proteins and other water-soluble macromolecules, EDC reacts with their available carboxylate groups to form an intermediate, highly reactive, o-acylisourea. This active ester species may further react with nucleophiles such as a hydrazide to yield a stable imide product (Figure 1.109). [Pg.142]

Figure 3.4 The water-soluble carbodiimide CMC reacts with carboxylates to form an active-ester intermediate. In the presence of amine-containing molecules, amide bond formation can take place with release of an isourea by-product. Figure 3.4 The water-soluble carbodiimide CMC reacts with carboxylates to form an active-ester intermediate. In the presence of amine-containing molecules, amide bond formation can take place with release of an isourea by-product.

See other pages where Esters, active water-soluble is mentioned: [Pg.126]    [Pg.21]    [Pg.53]    [Pg.163]    [Pg.439]    [Pg.5]    [Pg.91]    [Pg.152]    [Pg.65]    [Pg.196]    [Pg.94]    [Pg.607]    [Pg.134]    [Pg.213]    [Pg.29]    [Pg.507]    [Pg.162]    [Pg.305]    [Pg.314]    [Pg.202]    [Pg.208]    [Pg.167]    [Pg.94]    [Pg.77]    [Pg.79]    [Pg.114]    [Pg.157]    [Pg.172]    [Pg.179]    [Pg.219]    [Pg.222]    [Pg.223]    [Pg.224]    [Pg.280]    [Pg.306]   
See also in sourсe #XX -- [ Pg.237 ]




SEARCH



Activated esters

Active ester

Activity solubility

Solubility esters

Water activation

Water active

Water activity

Water esters

Water-soluble activated ester

Water-soluble activated ester

© 2024 chempedia.info