Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equipment economics

Advantages Low cost No grinding Broad applicability High b.p. solvent contamination of analyte Low investment Simple equipment Simultaneous extractions in series Low investment Simple equipment Rapid Economic solvent use Good reproducibility Low investment Simple equipment Economical Simple equipment Not traumatic Almost solvent free Concentrated analyte Rapid Low temperatures Rapid Automated Simultaneous extraction Low solvent use Rapid User friendly Automated Sequential extractions Not analyst labour intensive... [Pg.63]

The selection of appropriate processing plants and equipment, economics, and future developments are important considerations that are discussed in this section. [Pg.18]

Boiler cost estimates include fittings, refractory, insulation and cladding for outdoor installation, internal piping, platforms and stairs, burner and flame safety equipment, economizer, force-draft fan plus drive and soot blowers. [Pg.22]

This approach to synthesis is one of making a series of best local decisions. Equipment is added only if it can be justified economically on the basis of the information available, albeit an incomplete picture. This keeps the structure irreducible, and features which are technically or economically redundant are not included. [Pg.8]

Clearly, the time chart shown in Fig. 4.14 indicates that individual items of equipment have a poor utilization i.e., they are in use for only a small fraction of the batch cycle time. To improve the equipment utilization, overlap batches as shown in the time-event chart in Fig. 4.15. Here, more than one batch, at difierent processing stages, resides in the process at any given time. Clearly, it is not possible to recycle directly from the separators to the reactor, since the reactor is fed at a time different from that at which the separation is carried out. A storage tank is needed to hold the recycle material. This material is then used to provide part of the feed for the next batch. The final flowsheet for batch operation is shown in Fig. 4.16. Equipment utilization might be improved further by various methods which are considered in Chap. 8 when economic tradeoffs are discussed. [Pg.121]

Whether parallel operations, larger or smaller items of equipment, and intermediate storage should be used can only be judged on the basis of economic tradeoffs. However, this is still not the complete picture as far as the batch process tradeoffs are concerned. So far the batch size has not been varied. Batch size can be varied as a function of cycle time. Overall, the variables are... [Pg.251]

Having defined and gathered data adequate for an initial reserves estimation, the next step is to look at the various options to develop the field. The objective of the feasibility study is to document various technical options, of which at least one should be economically viable. The study will contain the subsurface development options, the process design, equipment sizes, the proposed locations (e.g. offshore platforms), and the crude evacuation and export system. The cases considered will be accompanied by a cost estimate and planning schedule. Such a document gives a complete overview of all the requirements, opportunities, risks and constraints. [Pg.5]

For some cheap, easily replaceable equipment, it may be more economic to do no maintenance at all, and in this case the item may be replaced on failure or at planned intervals. If the equipment is more highly critical, availability of spares and rapid replacement must be possible. [Pg.288]

A fatal accident and some other disasters, which were caused by small cracks, lead to a more strict consideration of the security of these steam drums. Parallel to these the economical pressure, due to the globalisation of the today s industry, lead to the increase of the pressure and the rotation speed of the paper production machines for a higher output of the production, which means, that all safety aspects from the design and the material will be exploited totally. On the other hand cast iron is also not a ductile and comfortable material, like the most steels for the pressure equipment. [Pg.31]

The pressure equipment directive was adopted by the European Parliament and the European Council in May 1997. It harmonises the national laws of the 15 Member States of the European Union relating to equipment subject to the pressure risk. That directive is one of the series of technical harmonisation directives such as for machinery, medical devices, simple pressure vessels, gas appliances and so on, which were foreseen by the Communities programme for the elimination of technical barriers to trade. It therefore aims to ensure the free placing on the market and putting into service of the equipment concerned within the European Union and the European Economic Area. At the same time it permits a flexible regulatory environment, allowing European industry to develop new techniques increasing thereby its international competitiveness. [Pg.937]

An important further constraint is the fact that economic considerations ia the constmction of deposition equipment normally lead to a preference for an ambient temperature deposition chamber. Control of deposition temperature is possible, but it adds both equipment expense and operational complexity. [Pg.429]

The development section serves as an intermediary between laboratory and industrial scale and operates the pilot plant. A dkect transfer from the laboratory to industrial-scale processes is stiH practiced at some small fine chemicals manufacturers, but is not recommended because of the inherent safety, environmental, and economic risks. Both equipment and plant layout of the pilot plant mirror those of an industrial multipurpose plant, except for the size (typically 100 to 2500 L) of reaction vessels and the degree of process automation. [Pg.436]

In the design of a fine chemicals plant equally important to the choice and positioning of the equipment is the selection of its size, especially the volume of the reaction vessels. Volumes of reactors vary quite widely, namely between 1,000 and 10,000 L, or ia rare cases 16,000 L. The cost of a production train ready for operation iacreases as a function of the 0.7 power. The personnel requirement iacreases at an even lower rate. Thus a large plant usiag large equipment would be expected to be more economical to mn than a small one. [Pg.438]

Cost Calculation. The main elements determining production cost are identical for fine chemicals and commodities (see Economic evaluation), a breakdown of production cost is given in Table 2. In multipurpose plants, where different fine chemicals occupying the equipment to different extents are produced during the year, a fair allocation of costs is a more difficult task. The allocation of the product-related costs, such as raw material and utiHties, is relatively easy. It is much more difficult to allocate for capital cost, labor, and maintenance. A simplistic approach is to define a daily rent by dividing the total yearly fixed cost of the plant by the number of production days. But that approach penalizes the simple products using only part of the equipment. [Pg.440]

Economic Considerations. The principal economic consideration is, of course, total installed system cost, including the initial cost of the flow primary, flow secondary, and related ancillary equipment as well as material and labor required for installation. Other typical considerations are operating costs and the requirements for scheduled maintenance. An economic factor of increasing importance is the cost of disposal at the end of normal flow meter service life. This may involve meter decontamination if hazardous fluids have been measured. [Pg.56]

Cellular mbber has been used extensively as shoe soles, where its combination of cushioning abiUty and wear resistance, coupled with desirable economics, has led to very wide acceptance. In this case the cushioning properties are of minor importance compared with the abrasion resistance and cost. Other significant cushioning appHcations for cellular mbbers and latex foam mbbers are as carpet underlay and as cushion padding ia athletic equipment. [Pg.416]


See other pages where Equipment economics is mentioned: [Pg.363]    [Pg.203]    [Pg.1559]    [Pg.259]    [Pg.363]    [Pg.203]    [Pg.1559]    [Pg.259]    [Pg.250]    [Pg.63]    [Pg.352]    [Pg.33]    [Pg.912]    [Pg.922]    [Pg.550]    [Pg.7]    [Pg.232]    [Pg.361]    [Pg.386]    [Pg.20]    [Pg.70]    [Pg.74]    [Pg.77]    [Pg.88]    [Pg.88]    [Pg.237]    [Pg.374]    [Pg.389]    [Pg.403]    [Pg.448]    [Pg.459]    [Pg.206]    [Pg.262]    [Pg.315]    [Pg.484]    [Pg.502]    [Pg.502]    [Pg.502]   
See also in sourсe #XX -- [ Pg.13 , Pg.70 , Pg.71 , Pg.72 ]




SEARCH



© 2024 chempedia.info