Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium reactions, kinetics,

Thermometric titrations (TT) and direct-injection enthalpimetry (DIE) are both calorimetric techniques the heat evolved or absorbed serves as an indicator of the progress of the reaction. Nowadays, TT and DIE are used for routine analysis and in fundamental research involving the chemical equilibrium, reaction kinetics, and thermochemistry of processes not readily studied by other methods. [Pg.509]

Fig. 3.9 shows a comparison between experimental and calculated concentration profiles in the laboratory column. A good agreement between model prediction and experiment can be observed. The simulation was able to describe all experimental data sets with the same accuracy as shown in Fig. 3.9. From these results, it was concluded that the equilibrium stage model is capable of describing the lab-scale experiments based solely on information on phase equilibrium, reaction kinetics and hardware set-up, giving the simulation a predictive character. Fig. 3.9 shows a comparison between experimental and calculated concentration profiles in the laboratory column. A good agreement between model prediction and experiment can be observed. The simulation was able to describe all experimental data sets with the same accuracy as shown in Fig. 3.9. From these results, it was concluded that the equilibrium stage model is capable of describing the lab-scale experiments based solely on information on phase equilibrium, reaction kinetics and hardware set-up, giving the simulation a predictive character.
The loop pressure has an important influence on the performance of the ammonia synthesis loop because of its influence on the reaction equilibrium, reaction kinetics, and gas/liquid equilibrium in the product separation. Actual selection of loop pressure is in many cases a compromise between selecting a high pressure to favour the ammonia synthesis reaction, and on the other hand selecting a reasonable pressure to minimise the compression power of the synthesis gas compressor, which compresses the synthesis gas to the desired loop pressure. The loop pressure also has a significant impact on the ammonia refrigeration system, since a high loop pressure favours condensation of the ammonia product in the loop water cooler and saves compression power on the refrigeration compressor. On the other hand, a low loop pressure saves compression power on the synthesis gas compressor, but increases the... [Pg.28]

Limitations (i) finding the reactive azeotropes might be sometimes troublesome and (ii) detailed knowledge of phase equilibrium, reaction kinetics and residence time within the column is required. [Pg.55]

The ealeulations have been conducted for a temperature of 1550°C and 1650°C as well as oxidising conditions with the software package FactSage 6.0. The phase constitution of a system is calculated under the assumption that the defined elements or compounds of the system react or partially react to reach a state of chemical equilibrium. Reaction kinetics are not considered in the thermochemical calculations. [Pg.237]

The treatment of incomplete reaction kinetics via Equations 3.61 and 3.62 is a rough approximation. A more exact treatment of incomplete/equilibrium reaction kinetics requires simultaneous consideration of the rates for both the forward and reverse reaction processes. For a simple first-order reaction of the form... [Pg.67]

Problem 3.4. An exact treatment of equilibrium reaction kinetics for reactions that do not go to completion was discussed in a dialog box in the text. Expressions 3.68 and 3.69 were provided as integrated rate laws for a simple equilibrium first-order reaction between A and B where the forward rate constant is given by Iq and the backward rate constant is given by k. Prove that as t -> oo, these expressions yield the equilibrium concentrations of species A and B and... [Pg.82]

For the ideal chemical cases, a dynamic model is simulated in Matlab. This model consists of ordinary differential equations for tray compositions and algebraic equations for vapor-liquid equilibrium, reaction kinetics, tray hydraulics, and tray energy balances. The dynamic model is used for steady-state design calculations by mnning the simulation out in time until a steady state is achieved. This dynamic relaxation method is quite effective in providing steady-state solutions, and convergence is seldom an issue. [Pg.10]

Flere, we shall concentrate on basic approaches which lie at the foundations of the most widely used models. Simplified collision theories for bimolecular reactions are frequently used for the interpretation of experimental gas-phase kinetic data. The general transition state theory of elementary reactions fomis the starting point of many more elaborate versions of quasi-equilibrium theories of chemical reaction kinetics [27, M, 37 and 38]. [Pg.774]

Adsorption is invariably an exothermic process, so that, provided equilibrium has been established, the amount adsorbed at a given relative pressure must diminish as the temperature increases. It not infrequently happens, however, that the isotherm at a given temperature Tj actually lies above the isotherm for a lower temperature Ti. Anomalous behaviour of this kind is characteristic of a system which is not in equilibrium, and represents the combined effects of temperature on the rate of approach to equilibrium and on the position of equilibrium itself. It points to a process which is activated in the reaction-kinetic sense and which therefore occurs more rapidly as temperature is increased. [Pg.228]

The term nucleophilicity refers to the effect of a Lewis base on the rate of a nucleophilic substitution reaction and may be contrasted with basicity, which is defined in terms of the position of an equilibrium reaction with a proton or some other acid. Nucleophilicity is used to describe trends in the kinetic aspects of substitution reactions. The relative nucleophilicity of a given species may be different toward various reactants, and it has not been possible to devise an absolute scale of nucleophilicity. We need to gain some impression of the structural features that govern nucleophilicity and to understand the relationship between nucleophilicity and basicity. ... [Pg.290]

Mechanism III cannot be distinguished from the first two on the basis of kinetics alone, because the reactive species shown is in rapid equilibrium with the anion and therefore equivalent to it in terms of reaction kinetics. [Pg.490]

Both the principles of chemical reaction kinetics and thermodynamic equilibrium are considered in choosing process conditions. Any complete rate equation for a reversible reaction involves the equilibrium constant, but quite often, complete rate equations are not readily available to the engineer. Thus, the engineer first must determine the temperature range in which the chemical reaction will proceed at a... [Pg.59]

Chemistry can be divided (somewhat arbitrarily) into the study of structures, equilibria, and rates. Chemical structure is ultimately described by the methods of quantum mechanics equilibrium phenomena are studied by statistical mechanics and thermodynamics and the study of rates constitutes the subject of kinetics. Kinetics can be subdivided into physical kinetics, dealing with physical phenomena such as diffusion and viscosity, and chemical kinetics, which deals with the rates of chemical reactions (including both covalent and noncovalent bond changes). Students of thermodynamics learn that quantities such as changes in enthalpy and entropy depend only upon the initial and hnal states of a system consequently thermodynamics cannot yield any information about intervening states of the system. It is precisely these intermediate states that constitute the subject matter of chemical kinetics. A thorough study of any chemical reaction must therefore include structural, equilibrium, and kinetic investigations. [Pg.1]

Chemical themiodynamics provides tlie answer to tlie first question however, it provides information about tlie second. Reaction rates fall witliin tlie domain of chemical kinetics and are treated later in tliis section. Both equilibrium and kinetic effects must be considered in an overall engineering analysis of a chemical reaction. [Pg.123]

The purpose of the present review is to indicate the methods that have been used to obtain quantitative equilibrium and kinetic data for this water-addition reaction and to discuss the results that have so far been reported. It is hoped that by describing some of the characteristics of this reaction recognition of further examples may be facilitated. [Pg.44]

Enzyme reaction kinetics were modelled on the basis of rapid equilibrium assumption. Rapid equilibrium condition (also known as quasi-equilibrium) assumes that only the early components of the reaction are at equilibrium.8-10 In rapid equilibrium conditions, the enzyme (E), substrate (S) and enzyme-substrate (ES), the central complex equilibrate rapidly compared with the dissociation rate of ES into E and product (P ). The combined inhibition effects by 2-ethoxyethanol as a non-competitive inhibitor and (S)-ibuprofen ester as an uncompetitive inhibition resulted in an overall mechanism, shown in Figure 5.20. [Pg.135]

This paper surveys the field of methanation from fundamentals through commercial application. Thermodynamic data are used to predict the effects of temperature, pressure, number of equilibrium reaction stages, and feed composition on methane yield. Mechanisms and proposed kinetic equations are reviewed. These equations cannot prove any one mechanism however, they give insight on relative catalyst activity and rate-controlling steps. Derivation of kinetic equations from the temperature profile in an adiabatic flow system is illustrated. Various catalysts and their preparation are discussed. Nickel seems best nickel catalysts apparently have active sites with AF 3 kcal which accounts for observed poisoning by sulfur and steam. Carbon laydown is thermodynamically possible in a methanator, but it can be avoided kinetically by proper catalyst selection. Proposed commercial methanation systems are reviewed. [Pg.10]

Tethering may be a reversible or an irreversible process. Irreversible grafting is typically accomplished by chemical bonding. The number of grafted chains is controlled by the number of grafting sites and their functionality, and then ultimately by the extent of the chemical reaction. The reaction kinetics may reflect the potential barrier confronting reactive chains which try to penetrate the tethered layer. Reversible grafting is accomplished via the self-assembly of polymeric surfactants and end-functionalized polymers [59]. In this case, the surface density and all other characteristic dimensions of the structure are controlled by thermodynamic equilibrium, albeit with possible kinetic effects. In this instance, the equilibrium condition involves the penalties due to the deformation of tethered chains. [Pg.46]

The concentration of the lactam in the final product is determined by (3.11). Cyclic dimers can also form, and these also take part in the polymerization12 the reactions are acid catalyzed. The kinetics of this ring-opening polymerization with the three reactions in (3.10)—(3.12) is complex. The reaction rate constants and equilibrium constants have been described by several authors,5 6,8,12 28 and more pragmatic approaches for describing the reaction kinetics have also been given.28,31,33... [Pg.153]

Kinetic studies of chemical equilibrium (Reaction 4) have provided very accurate thermodynamic information about the series Me3 SiH +i (with n having values from 0 to 3). ° In particular, the rate constants 4 and k, obtained by time-resolved experiments, allow the determination of the reaction enthalpy (AHr) either by second or third law method. In Table 2 the DHfRsSi-H) values obtained by Equation (5) are reported. [Pg.121]

Chemical vapor deposition processes are complex. Chemical thermodynamics, mass transfer, reaction kinetics and crystal growth all play important roles. Equilibrium thermodynamic analysis is the first step in understanding any CVD process. Thermodynamic calculations are useful in predicting limiting deposition rates and condensed phases in the systems which can deposit under the limiting equilibrium state. These calculations are made for CVD of titanium - - and tantalum diborides, but in dynamic CVD systems equilibrium is rarely achieved and kinetic factors often govern the deposition rate behavior. [Pg.275]

Oxidation potentials lead to a value of 7.9 x 10 for the equilibrium constant. Kinetic data for the reaction (from 0 to 55.6 °C) in acid perchlorate solutions (over the range 0.047-1.0 M) have been obtained spectrophotometrically by following the disappearance of V(V) (which absorbs strongly between 305 and 350 m/i) as a function of time. The second-order nature of the rate law... [Pg.154]

The WGS reaction is a reversible reaction, that is, it attains equilibrium with reverse WGS reaction. Thus the fact that the WGS reaction is promoted by H20(a reactant), in turn, implies that the reverse WGS reaction may also be promoted by a reactant, H2 or CO2. In fact the decomposition of the surface formates produced from H2+CO2 is promoted 8-10 times by gas-phase hydrogen. The WGS and reverse WGS reactions can conceivably proceed on different formate sites of the ZnO surface unlike usual catalytic reaction kinetics, while the occurrence of the reactant-promoted reactions does not violate the principle of microscopic reversibility[63]. [Pg.30]

Polarization equations are convenient when (1) the measurements are made in solutions of a particular constant composition, and (2) the equilibrium potential is established at the electrode, and the polarization curve can be measured both at high and low values of polarization. The kinetic equations are more appropriate in other cases, when the equilibrium potential is not established (e.g., for noninvertible reactions, or when the concentration of one of the components is zero), and also when the influence of component concentrations on reaction kinetics is of interest. [Pg.86]

As indicated before, the columns and the rows of a bilinear or trilinear dataset have a particular meaning, e.g., a spectrum and a chromatogram or the concentration profiles of reactants and the reaction products in an equilibrium or kinetic study. The resulting data table is made up by the product of the tables of these pure factors, e.g., the table of the elution profiles of the pure compounds and the table of the spectra of these compounds. One of the aims of a study of such a table is the decomposition of the table into its pure spectra and pure elution profiles. This is done by factor analysis (Chapter 34). [Pg.3]

Various statistical treatments of reaction kinetics provide a physical picture for the underlying molecular basis for Arrhenius temperature dependence. One of the most common approaches is Eyring transition state theory, which postulates a thermal equilibrium between reactants and the transition state. Applying statistical mechanical methods to this equilibrium and to the inherent rate of activated molecules transiting the barrier leads to the Eyring equation (Eq. 10.3), where k is the Boltzmann constant, h is the Planck s constant, and AG is the relative free energy of the transition state [note Eq. (10.3) ignores a transmission factor, which is normally 1, in the preexponential term]. [Pg.417]

A well-recognized strength of thermodynamics is that it can predict whether or not a particular reaction occurs, under specified conditions, and the relative amounts of the reactants and the products that would be present when equilibrium is reached. The thermodynamic approach, however, does not provide an indication of the rate at which the equilibrium would be reached. This information is provided by reaction kinetics. [Pg.292]

Let us consider a redox system at a static inert electrode. Whilst thermodynamics only describe the equilibrium of such a system (cf., Section 2.2.1.2.1), kinetics deal with an approach to equilibrium and assume a dynamic maintenance of that state. For that purpose the equilibrium reaction... [Pg.119]

The reaction equilibrium issues have become clearer, but the mechanism of the reaction and the real active catalytic complex were unknown. I nitially, we addressed these issues by measuring the reaction kinetics but the attempt did not lead us to a clear conclusion. [Pg.66]


See other pages where Equilibrium reactions, kinetics, is mentioned: [Pg.67]    [Pg.364]    [Pg.585]    [Pg.67]    [Pg.364]    [Pg.585]    [Pg.778]    [Pg.265]    [Pg.180]    [Pg.186]    [Pg.766]    [Pg.1231]    [Pg.232]    [Pg.181]    [Pg.33]    [Pg.401]    [Pg.429]    [Pg.255]    [Pg.543]    [Pg.293]    [Pg.485]   


SEARCH



Chemical reaction equilibrium/kinetic

Chemical reaction kinetics incomplete reactions/equilibrium

Chemical reactions equilibrium kinetics

Equilibria and Kinetics of Explosive Reactions

Equilibrium and Kinetics of Enzyme-Coenzyme Reactions

Equilibrium constants surface reaction kinetics

Equilibrium kinetic reactions

Equilibrium kinetic reactions

Equilibrium kinetics

Fundamentals of Kinetics and Reaction Equilibrium

Kinetics and Equilibria of Excited State Protonation Reactions

More Complex Kinetic Situations Involving Reactants in Equilibrium with Each Other and Undergoing Reaction

Physical Properties, Reaction Equilibrium and Kinetics

Reactions Kinetics, Dynamics, and Equilibrium

The Quasi-Equilibrium Approximation Enzymatic Reaction Kinetics

© 2024 chempedia.info