Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzymatic reaction scheme system

Since none of the liposomal immunoassay approaches described in the scientific literature thus far took advantage of surface immobilization techniques, one could envision a double-amplification biosensor in which surface modification plays an important role [35]. For example, consider a dehydrogenase enzyme marker system which requires an electroactive cofactor such as NAD+. In the enzymatic reaction scheme ... [Pg.252]

Surprisingly, the 7t-system geometry in a substrate has a notable influence in the enzymatic aminolysis of esters. The reaction of diethyl fumarate with different amines or ammonia in the presence of CALB led to the corresponding trans-amidoesters with good isolated yields, but in the absence of enzyme, a high percentage of the corresponding Michael adduct is obtained (Scheme 7.9). Enzymatic aminolysis of diethyl maleate led to the recovery of the same a, P-unsaturated amidoester, diethyl fumarate, and diethyl maleate. The explanation of these results can be rationalized via a previous Michael/retro-Michael type isomerization of diethyl maleate to fumarate, before the enzymatic reaction takes place. In conclusion, diethylmaleate is not an adequate substrate for this enzymatic aminolysis reaction [23]. [Pg.177]

Since the enzymatic reactions are generally rapid, it may be assumed that the steady-state approximation applies. Note, however, that although true is most systems, this is not always the case, as exemplified in Section 5.2.5. Each half-reaction is characterized by three rate constants, defined in Scheme 5.1. They may alternatively be characterized by the following... [Pg.300]

For heavy atom isotope effects tunneling is relatively unimportant and the TST model suffices. As an example the dehalogenation of 1,2-dichloroethane (DCE) to 2-chloroethanol catalyzed by haloalkane dehalogenase DhlA is discussed below. This example has been chosen because the chlorine kinetic isotope effect for this reaction has been computed using three different schemes, and this system is among the most thoroughly studied examples of heavy atom isotope effects in enzymatic reactions. [Pg.385]

In contrast to these reaction schemes, enzymatic hydrolysis shows optimal rates at pH 7-8, at least as far as animal esterases are concerned. Increasing concentrations of either H+ or 0H slow the hydrolytic reactions down. Therefore, a different catalytic mechanism, not included in Ingold s reaction schemes, must be operative in enzymatic systems. [Pg.137]

An alternative biosensor system has been developed by Hart et al. [44] which involves the use of the NAD+-dependent GDH enzyme. The first step of the reaction scheme involves the enzymatic reduction of NAD+ to NADH, which is bought about by the action of GDH on glucose. The analytical signal arises from the electrocatalytic oxidation of NADH back to NAD+ in the presence of the electrocatalyst Meldola s Blue (MB), at a potential of only 0Y. Biosensors utilising this mediator have been reviewed elsewhere [1,17]. Razumiene et al. [45] employed a similar system using both GDH and alcohol dehydrogenase with the cofactor pyrroloquinoline quinone (PQQ), the oxidation of which was mediated by a ferrocene derivative. [Pg.503]

Extrapolating from well-characterized enzymatic inhibition in test tubes, numerous mechanistic ideas concerning the in vivo effects of vanadium compounds have been advanced. The effects of vanadium compounds as transition-state analogs of certain enzymes with a phosphoprotein intermediate in their reaction scheme is proposed to account for the action of vanadium [11] in many biological systems. Unfortunately, it is often difficult to determine if the inhibition observed in the test tube occurs in vivo. For example, although vanadate is a potent inhibitor of plasma membrane ion pumps (such as the sodium potassium ATPase) in the test tube, it is difficult to determine if these pumps are actually inhibited in animals exposed to vanadium compounds. Currently, the role of vanadium compounds as protein phosphatase (PTP) inhibitors is believed to be related to the metabolic effects of this... [Pg.172]

In order to increase the efficiency of biocatalytic transformations conducted under continuous flow conditions, Honda et al. (2006, 2007) reported an integrated microfluidic system, consisting of an immobilized enzymatic microreactor and an in-line liquid-liquid extraction device, capable of achieving the optical resolution of racemic amino acids under continuous flow whilst enabling efficient recycle of the enzyme. As Scheme 42 illustrates, the first step of the optical resolution was an enzyme-catalyzed enantioselective hydrolysis of a racemic mixture of acetyl-D,L-phenylalanine to afford L-phenylalanine 157 (99.2-99.9% ee) and unreacted acetyl-D-phenylalanine 158. Acidification of the reaction products, prior to the addition of EtOAc, enabled efficient continuous extraction of L-phenylalanine 157 into the aqueous stream, whilst acetyl-D-phenylalanine 158 remained in the organic fraction (84—92% efficiency). Employing the optimal reaction conditions of 0.5 gl min 1 for the enzymatic reaction and 2.0 gl min-1 for the liquid-liquid extraction, the authors were able to resolve 240 nmol h-1 of the racemate. [Pg.153]

Improved sensitivity and scope can be achieved by coupling two (or more) enzymatic reactions in a chain, cycling, or catalytic mechanism (9). For example, a considerable enhancement of the sensitivity of enzyme electrodes can be achieved by enzymatic recycling of the analyte in two-enzyme systems. Such an amplification scheme generates more than a stoichiometric amount of product and hence large analytical signals for low levels of the analyte. In addition, a second enzyme can be used to generate a detectable (electroactive) species, from a nonelectroactive product of the first reaction. [Pg.207]

One group of NADH oxidants, which does not fit the proposed reaction scheme in Fig. 2.4 are the metal complexes. Examples of this type include nickel hexacyanoferrate deposited on porous nickel electrodes [29], gold electrodes modified with cobalt hexacyanoferrate films [30] and adsorbed l,10-phenanthroline-5,6-dione complexes of ruthenium and osmium [31]. It is unclear how these systems work and no mechanism has been proposed to date. It may be worth noting that dihydronicotinamide groups have been shown to reduce aldehydes in a non-enzymatic reaction when the reaction is catalysed by zinc, a metal ion [15]. In a reaction between 1,10-phenanthroline-2-carboxaldehyde and N-propyl-l,4-dihydronicotinamide, no reaction was seen in the absence of zinc but when added to the system, the aldehyde was reduced and the nicotinamide was oxidised. This implies that either coordination to, or close proximity of, the metal ion activates... [Pg.44]

In the preparation of dynamic nitroaldol systems, different aldehydes and nitroalkanes were first evaluated for reversible nitroaldol reactions in the presence of base to avoid any side- or competitive reactions, and to investigate the rate of the reactions. 1H-NMR spectroscopy was used to follow the reactions by comparison of the ratios of aldehyde and the nitroalcohols. Among various bases, triethylamine was chosen as catalyst because its reactions provided the fastest exchange reaction and proved compatible with the enzymatic reactions. Then, five benzaldehydes 18A-E and 2-nitropropane 19 (Scheme 9) were chosen to study dynamic nitroaldol system (CDS-2) generation, because of their similar individual reactivity and product stabilities in the nitroaldol reaction. Ten nitroaldol adducts ( )-20A-E were generated under basic conditions under thermodynamic control, showing... [Pg.68]

In developing some of the elementary principles of the kinetics of enzyme reactions, we shall discuss an enzymatic reaction that has been suggested by Levine and LaCourse as part of a system that would reduce the size of an artificial kidney. The desired result is the production of an artificial kidney that could be worn by the patient and would incorporate a replaceable unit for the elimination of tte nitrogenous waste products such as uric acid and creatinine, In the microencapsulation scheme proposed by Levine and LaCourse, the enzyme urease would be used in tire removal of urea from ti)e bloodstream. Here, the catalytic action of urease would cause urea to decompose into ammonia and carbon dioxide. The mechanism of the reaction is believed to proceed by the following sequence of elementary reactions ... [Pg.486]

Fig. 25.1. Analysis of the catalytic activity of CalB at the single-moiecuie ievei. (a) Detection of single enzymatic turnover events of the enzyme CaiB. The fluorogenic substrate BCECF-AM is hydrolyzed by CalB yielding the highly fluorescent dye BCECF. (b) Proposed reaction scheme explaining dynamic disorder. The enzyme interconverts between different conformations with the rate constants Oa, b. Each conformation hydrolyzes the substrate with its own rate constant fci. If conformational changes are slower than the catalytic reaction, a certain conformation performs several turnover cycles before it switches into another conformation. While subsequent turnovers in one conformation are correlated, the system loses its memory after a conformational change... Fig. 25.1. Analysis of the catalytic activity of CalB at the single-moiecuie ievei. (a) Detection of single enzymatic turnover events of the enzyme CaiB. The fluorogenic substrate BCECF-AM is hydrolyzed by CalB yielding the highly fluorescent dye BCECF. (b) Proposed reaction scheme explaining dynamic disorder. The enzyme interconverts between different conformations with the rate constants Oa, b. Each conformation hydrolyzes the substrate with its own rate constant fci. If conformational changes are slower than the catalytic reaction, a certain conformation performs several turnover cycles before it switches into another conformation. While subsequent turnovers in one conformation are correlated, the system loses its memory after a conformational change...
In addition to studying single monomers in enzymatic polymerization reactions, comonomer reaction schemes are of interest because they have the potential to produce copolymer films possessing more interesting and varied properties. To illustrate this possibility, in Fig. 6 we show how the mixing of the amphiphihc BELT monomer with the same chirahty but non-amphiphihc L-tyrosine monomer has been studied in a comonomer system [59]. We present an equilibrium coupled to the HRP-catalyzed reaction for this comonomer system that has the same character as the steps we pre-... [Pg.385]

Based on their work on supercritical CO2 (see also Scheme 23), Reetz and Leitner introduced a technologically new and interesting continuous flow process for enzymatic reactions [65]. The group designed a protocol for enzymatic reactions, namely the lipase-catalyzed acylation (CAL B) of octan-1 -ol by vinyl acetate in ionic liquids (l-butyl-3-methylimidazolium bis(trifluo-romethanesulfonimide) [BMIM] [BTA]) using supercritical CO2 as the mobile phase (Scheme 25). The alcohol is pumped through the biphasic system and the products are obtained in solvent-free form in a cold trap. The enzyme/ionic liquid mixture can be recycled in batchwise or continuous flow operations. [Pg.235]

A critical factor currently limiting the exposure assessment of transformation products for substance classes other than pesticides is the lack of information on transformation schemes. Various computer tools exist whose goal it is to predict aerobic biodegradation pathways [63-66], but to the best of our knowledge, only CATABOL [65] (see chapter by Howard) and the University of Minnesota Pathway Prediction System (UM-PPS) (see chapter by Wackett Ellis) [66] are presently under constant development. In both systems, pathway prediction is based on an extensive collection of known enzymatic reactions, based on which transformation rules have been compiled that translate a substrate substructure into a product substructure. [Pg.144]

Chiral recognition of prochiral (meso-carbon) centres is a general feature of enzymatic reactions, but has not been firmly established in model systems. However, Job and Bruice have now reported achieving 100% chiral differentiation of prochiral carboxyl-groups and 65 % steric induction in the reaction sequence shown in Scheme 6. Meso-l,8-diamino-3,6-diaza-2,7-dimethyl-octane (L) forms the complex ions [Co(N02)2L] and [CoCl2L]. ... [Pg.257]


See other pages where Enzymatic reaction scheme system is mentioned: [Pg.28]    [Pg.106]    [Pg.186]    [Pg.369]    [Pg.349]    [Pg.97]    [Pg.197]    [Pg.194]    [Pg.207]    [Pg.74]    [Pg.274]    [Pg.133]    [Pg.404]    [Pg.2378]    [Pg.269]    [Pg.73]    [Pg.74]    [Pg.101]    [Pg.124]    [Pg.487]    [Pg.172]    [Pg.198]    [Pg.890]    [Pg.248]    [Pg.498]    [Pg.784]    [Pg.163]    [Pg.260]   
See also in sourсe #XX -- [ Pg.252 ]




SEARCH



Enzymatic reaction scheme

Enzymatic reaction systems

Enzymatic system

Reaction Enzymatic reactions

Reaction scheme

© 2024 chempedia.info