Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantiomers ethers

Appllca.tlons. The first widely appHcable Ic separation of enantiomeric metallocene compounds was demonstrated on P-CD bonded-phase columns. Thirteen enantiomeric derivatives of ferrocene, mthenocene, and osmocene were resolved (7). Retention data for several of these compounds are listed in Table 2, and Figure 2a shows the Ic separation of three metallocene enantiomeric pairs. P-Cyclodextrin bonded phases were used to resolve several racemic and diastereomeric 2,2-binaphthyldiyl crown ethers (9). These compounds do not contain a chiral carbon but stiU exist as enantiomers because of the staggered position of adjacent naphthyl rings, and a high degree of chiral recognition was attained for most of these compounds (9). [Pg.97]

The chiral BOX-copper(ll) complexes, (S)-21a and (l )-21b (X=OTf, SbFg), were found by Evans et al. to catalyze the enantioselective cycloaddition reactions of the a,/ -unsaturated acyl phosphonates 49 with ethyl vinyl ether 46a and the cyclic enol ethers 50 giving the cycloaddition products 51 and 52, respectively, in very high yields and ee as outlined in Scheme 4.33 [38b]. It is notable that the acyclic and cyclic enol ethers react highly stereoselectively and that the same enantiomer is formed using (S)-21a and (J )-21b as the catalyst. It is, furthermore, of practical importance that the cycloaddition reaction can proceed in the presence of only 0.2 mol% (J )-21a (X=SbF6) with minimal reduction in the yield of the cycloaddition product and no loss of enantioselectivity (93% ee). [Pg.179]

Early examples of enantioselective extractions are the resolution of a-aminoalco-hol salts, such as norephedrine, with lipophilic anions (hexafluorophosphate ion) [184-186] by partition between aqueous and lipophilic phases containing esters of tartaric acid [184-188]. Alkyl derivatives of proline and hydroxyproline with cupric ions showed chiral discrimination abilities for the resolution of neutral amino acid enantiomers in n-butanol/water systems [121, 178, 189-192]. On the other hand, chiral crown ethers are classical selectors utilized for enantioseparations, due to their interesting recognition abilities [171, 178]. However, the large number of steps often required for their synthesis [182] and, consequently, their cost as well as their limited loadability makes them not very suitable for preparative purposes. Examples of ligand-exchange [193] or anion-exchange selectors [183] able to discriminate amino acid derivatives have also been described. [Pg.16]

Addition of a chiral carrier can improve the enantioselective transport through the membrane by preferentially forming a complex with one enantiomer. Typically, chiral selectors such as cyclodextrins (e.g. (4)) and crown ethers (e.g. (5) [21]) are applied. Due to the apolar character of the inner surface and the hydrophilic external surface of cyclodextrins, these molecules are able to transport apolar compounds through an aqueous phase to an organic phase, whereas the opposite mechanism is valid for crown ethers. [Pg.131]

From intermediate 28, the construction of aldehyde 8 only requires a few straightforward steps. Thus, alkylation of the newly introduced C-3 secondary hydroxyl with methyl iodide, followed by hydrogenolysis of the C-5 benzyl ether, furnishes primary alcohol ( )-29. With a free primary hydroxyl group, compound ( )-29 provides a convenient opportunity for optical resolution at this stage. Indeed, separation of the equimolar mixture of diastereo-meric urethanes (carbamates) resulting from the action of (S)-(-)-a-methylbenzylisocyanate on ( )-29, followed by lithium aluminum hydride reduction of the separated urethanes, provides both enantiomers of 29 in optically active form. Oxidation of the levorotatory alcohol (-)-29 with PCC furnishes enantiomerically pure aldehyde 8 (88 % yield). [Pg.196]

Under irradiation in diethyl ether, the dextrorotary enantiomer of 3,6-hexanooxepin-4-carb-oxylic acid rearranges to the oxabicyclo[3.2.0]heptadiene system with retention of the optical activity.36... [Pg.45]

A solution of 3.7 g (12 mmol) of the pure (l R)-diastereomer 6 is stirred under nitrogen in 15 mL of iodomethane and 5 mL of dry DMSO for 36 h. The excess iodomethanc is evaporated leaving a viscous red oil which is heated under reflux in 25 mL of 2N KOI for 5 h. After cooling, the amino alcohol is removed from the aqueous phase by extraction with Et20. The alkaline aqueous layer is acidified with 12 N HC1 and extracted with Ei,0. The crude product is recrystallized from benzene/petroleum ether to give enantiomer-ically pure (R)-2-hydroxy-2-phenylpropanoic acid [(-)-(R)-atrolaclic acid] (7) yield 1.4 g (71%) mp U5-116X [x]25 - 38.4 (< = 2.5, EtOH). [Pg.105]

It is well known that spontaneous resolution of a racemate may occur upon crystallization if a chiral molecule crystallizes as a conglomerate. With regard to sulphoxides, this phenomenon was observed for the first time in the case of methyl p-tolyl sulphoxide269. The optical rotation of a partially resolved sulphoxide (via /J-cyclodextrin inclusion complexes) was found to increase from [a]589 = + 11.5° (e.e. 8.1%) to [a]589 = +100.8 (e.e. 71.5%) after four fractional crystallizations from light petroleum ether. Later on, few optically active ketosulphoxides of low optical purity were converted into the pure enantiomers by fractional crystallization from ethyl ether-hexane270. This resolution by crystallization was also successful for racemic benzyl p-tolyl sulphoxide and t-butyl phenyl sulphoxide271. [Pg.286]

In 1947, L-rhamnose was first recognized by Stacey as a constituent of Pneumococcus Type II specific polysaccharide. This finding was confirmed, in 1952, by Kabat et al. and in 1955 again by Stacey when 2,4- and 2,5-di-O-methyl-L-rhamnose were synthesized and the former was shown to be identical with a di-O-methylrhamnose, obtained by hydrolysis of the methylated polysaccharide. This result indicated a pyranose ring structure for the rhamnose units in the polysaccharide. Announcement of the identification of D-arabinofuranose as a constituent of a polysaccharide from M. tuberculosis aroused considerable interest. The L-enantiomer had been found extensively in polysaccharides, but reports of the natural occurrence of D-arabinose had been comparatively rare. To have available reference compounds for comparison with degradation products of polysaccharides, syntheses of derivatives (particularly methyl ethers) of both d- and L-arabinose were reported in 1947. [Pg.13]

In a first report [24], the enantioselectivities of various proteases were evaluated by comparing the biocatalyzedhydrolysis of2-chloroethyl esters of N-acetyl-i- and D-amino acids in water and their transesterification with w-propanol in butyl ether. By comparing the ratio of the kc t/Ku values for the l- and D-enantiomers in the two reactions, a remarkable relation of the proteases enantioselectivity was observed apparently, in this case, the organic solvents destroyed the selectivity of the tested enzymes. This finding... [Pg.9]

Chiral Recognition. The use of chiral hosts to form diastereomeric inclusion compounds was mentioned above. But in some cases it is possible for a host to form an inclusion compound with one enantiomer of a racemic guest, but not the other. This is caUed chiral recognition. One enantiomer fits into the chiral host cavity, the other does not. More often, both diastereomers are formed, but one forms more rapidly than the other, so that if the guest is removed it is already partially resolved (this is a form of kinetic resolution, see category 6). An example is use of the chiral crown ether (53) partially to resolve the racemic amine salt (54). " When an aqueous solution of 54 was... [Pg.152]

Bis-(l-chloro-2-propyl)ether has two chiral centers, and exists in (R,R)-, (S,S)-, and a meso form. It is degraded by Rhodococcus sp. with a preference for the 5,5-enantiomer with the intermediate formation of l-chloro-propan-2-ol and chloroacetone (Garbe et al. 2006). [Pg.54]

Optically active peracids such as percamphoric acid have been used to oxidize selectively one sulphoxide enantiomer in a racemic mixture. These reactions involve the use of 0.5 molar equivalents of the peracid in either ether or chloroform as solvent. The presence of nitro groups causes the oxidant to be consumed without oxidation of the sulphoxide functionality. This method is usually used to obtain an optically active sulphoxide by recovery of the unreacted material after oxidation. [Pg.974]

Capillary electrophoresis employing chiral selectors has been shown to be a useful analytical method to separate enantiomers. Conventionally, instrumental chiral separations have been achieved by gas chromatography and by high performance liquid chromatography.127 In recent years, there has been considerable activity in the separation and characterization of racemic pharmaceuticals by high performance capillary electrophoresis, with particular interest paid to using this technique in modem pharmaceutical analytical laboratories.128 130 The most frequently used chiral selectors in CE are cyclodextrins, crown ethers, chiral surfactants, bile acids, and protein-filled... [Pg.405]


See other pages where Enantiomers ethers is mentioned: [Pg.80]    [Pg.63]    [Pg.187]    [Pg.157]    [Pg.157]    [Pg.178]    [Pg.1031]    [Pg.258]    [Pg.127]    [Pg.262]    [Pg.24]    [Pg.25]    [Pg.59]    [Pg.55]    [Pg.194]    [Pg.639]    [Pg.679]    [Pg.689]    [Pg.158]    [Pg.493]    [Pg.610]    [Pg.792]    [Pg.16]    [Pg.67]    [Pg.125]    [Pg.165]    [Pg.462]    [Pg.116]    [Pg.407]    [Pg.433]    [Pg.39]    [Pg.73]    [Pg.329]   
See also in sourсe #XX -- [ Pg.1606 , Pg.1607 ]




SEARCH



Enantiomers crown ethers

© 2024 chempedia.info