Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantiomers crown ethers

Vogtle F, Knops P (1991) Dyes for visual distinction between enantiomers - crown ethers as optical sensors for chiral compounds. Angew Chem Int Ed Engl 30 958-960... [Pg.210]

Appllca.tlons. The first widely appHcable Ic separation of enantiomeric metallocene compounds was demonstrated on P-CD bonded-phase columns. Thirteen enantiomeric derivatives of ferrocene, mthenocene, and osmocene were resolved (7). Retention data for several of these compounds are listed in Table 2, and Figure 2a shows the Ic separation of three metallocene enantiomeric pairs. P-Cyclodextrin bonded phases were used to resolve several racemic and diastereomeric 2,2-binaphthyldiyl crown ethers (9). These compounds do not contain a chiral carbon but stiU exist as enantiomers because of the staggered position of adjacent naphthyl rings, and a high degree of chiral recognition was attained for most of these compounds (9). [Pg.97]

Early examples of enantioselective extractions are the resolution of a-aminoalco-hol salts, such as norephedrine, with lipophilic anions (hexafluorophosphate ion) [184-186] by partition between aqueous and lipophilic phases containing esters of tartaric acid [184-188]. Alkyl derivatives of proline and hydroxyproline with cupric ions showed chiral discrimination abilities for the resolution of neutral amino acid enantiomers in n-butanol/water systems [121, 178, 189-192]. On the other hand, chiral crown ethers are classical selectors utilized for enantioseparations, due to their interesting recognition abilities [171, 178]. However, the large number of steps often required for their synthesis [182] and, consequently, their cost as well as their limited loadability makes them not very suitable for preparative purposes. Examples of ligand-exchange [193] or anion-exchange selectors [183] able to discriminate amino acid derivatives have also been described. [Pg.16]

Addition of a chiral carrier can improve the enantioselective transport through the membrane by preferentially forming a complex with one enantiomer. Typically, chiral selectors such as cyclodextrins (e.g. (4)) and crown ethers (e.g. (5) [21]) are applied. Due to the apolar character of the inner surface and the hydrophilic external surface of cyclodextrins, these molecules are able to transport apolar compounds through an aqueous phase to an organic phase, whereas the opposite mechanism is valid for crown ethers. [Pg.131]

Chiral Recognition. The use of chiral hosts to form diastereomeric inclusion compounds was mentioned above. But in some cases it is possible for a host to form an inclusion compound with one enantiomer of a racemic guest, but not the other. This is caUed chiral recognition. One enantiomer fits into the chiral host cavity, the other does not. More often, both diastereomers are formed, but one forms more rapidly than the other, so that if the guest is removed it is already partially resolved (this is a form of kinetic resolution, see category 6). An example is use of the chiral crown ether (53) partially to resolve the racemic amine salt (54). " When an aqueous solution of 54 was... [Pg.152]

Capillary electrophoresis employing chiral selectors has been shown to be a useful analytical method to separate enantiomers. Conventionally, instrumental chiral separations have been achieved by gas chromatography and by high performance liquid chromatography.127 In recent years, there has been considerable activity in the separation and characterization of racemic pharmaceuticals by high performance capillary electrophoresis, with particular interest paid to using this technique in modem pharmaceutical analytical laboratories.128 130 The most frequently used chiral selectors in CE are cyclodextrins, crown ethers, chiral surfactants, bile acids, and protein-filled... [Pg.405]

In the preceding section it was shown that the stability of crown-ether complexes with alkylammonium salts depends on the relationship between the structures of the crown ethers and the ammonium ions. How critically this relationship determines the complex stability will become clear in this section, which deals with the discrimination between the two enantiomers of racemic salts by chiral macrocyclic ligands. [Pg.381]

Ha is the more and HB is the less complexed host enantiomer in the aqueous phase. In the second type of experiment excess of racemic valine and optically pure (S)-[269] were distributed between two immiscible phases. In this experiment a 1 1 complex is formed in the non-aqueous phase in which L-valine dominates by an amount of 12.5% (CRFchc1j 1.28 and EDC 1.50). In terms of differences in free energy between the two diastereoisomeric complexes this means a difference in A(AG°) of 0.23 kcal mol-1 in favour of the (l)-S-[269] complex. Similar experiments have been carried out with crown ethers [270]—[280]. [Pg.384]

The maximum observed free energy difference between two enantiomeric host-guest complexes in which one 1,1 -dinaphthyl element is the only source of chirality in the crown ether is about 0.3 kcal mol-1. Improvement of the free energy difference can be achieved by introduction of two such elements. Unfortunately crown ethers with three 1,1 -dinaphthyl groups did not form complexes with primary ammonium salts (de Jong et al., 1975). The dilocular chiral crown ether [294] forms complexes of different stability with R- and 5-cr-phenylethylammonium hexafluorophosphate. The (J )-J J -[284] complex was the more stable by 0.3 kcal mol-1 at 0°C (EDC value 1.77) (Kyba et al., 1973b). Crown ether [284] also discriminates between the two enantiomers of phenylglycine methyl ester hexafluorophosphate and valine methyl ester... [Pg.389]

In complexes of crown ethers [303] to [305] (types IV and V) both large groups are located in the larger of the two non-equivalent chiral cavities (Kyba et al., 1978). This was concluded from H nmr spectra of the diastereomeric complexes of [303] with a-phenylethylammonium salts. In the spectra the position of the methyl protons in both diastereomeric complexes is the same, in contrast to the methyl protons in complexes of [284] or [285] with the same salt. In the latter the upheld shift of the methyl protons in the more stable SS-(R) enantiomeric complex differs from that in the less stable SS-(S) enantiomer. Taking into account the available data summarized above, the tentative conclusion seems to be that the simple steric model (see structure... [Pg.405]

HPLC, using a Crownpack CR column containing an 18-crown-6-type chiral crown ether, served to separate and resolve the enantiomers of 5,6-dihydroxy-2-aminotetraline (132a) and 6,7-dihydroxy-2-aminotetraline (132b) at pH 2.0 LOQ for enantiomeric impurities was <0.1%308. [Pg.1092]

In principle, mass spectrometry is not suitable to differentiate enantiomers. However, mass spectrometry is able to distinguish between diastereomers and has been applied to stereochemical problems in different areas of chemistry. In the field of chiral cluster chemistry, mass spectrometry, sometimes in combination with chiral chromatography, has been extensively applied to studies of proton- and metal-bound clusters, self-recognition processes, cyclodextrin and crown ethers inclusion complexes, carbohydrate complexes, and others. Several excellent reviews on this topic are nowadays available. A survey of the most relevant examples will be given in this section. Most of the studies was based on ion abundance analysis, often coupled with MIKE and CID ion fragmentation on MS " and FT-ICR mass spectrometric instruments, using Cl, MALDI, FAB, and ESI, and atmospheric pressure ionization (API) methods. [Pg.196]

Based on the theory, the separation of enantiomers requires a chiral additive to the CE separation buffer, while diastereomers can also be separated without the chiral selector. The majority of chiral CE separations are based on simple or chemically modified cyclodextrins. However, also other additives such as chiral crown ethers, linear oligo- and polysaccharides, macrocyclic antibiotics, chiral calixarenes, chiral ion-pairing agents, and chiral surfactants can be used. Eew non-chiral separation examples for the separation of diastereomers can be found. [Pg.110]

An extremely important aspect in pharmaceutical research is the determination of drug optical purity. The most frequently applied technique for chiral separations in CZE remains the so-called dynamic mode where resolution of enantiomers is carried out by adding a chiral selector directly into the BGE for in situ formation of diastereomeric derivatives. Various additives, such as cyclodextrins (CD), chiral crown ethers, proteins, antibiotics, bile salts, chiral micelles, and ergot alkaloids, are reported as chiral selectors in the literature, but CDs are by far the selectors most widely used in chiral CE. [Pg.486]

Racemic modifications may be resolved. There are very few examples of this approach having been employed successfully. The racemic cylic ether (RS)-36, which contains two CH2OCH2CO2H arms attached to the 3 and 3 positions on the axially chiral binaphthyl units, has been resolved (48-50, 93, 94) to optical purity in both its enantiomers by liquid-liquid chromatography using a chiral stationary phase of either (R)- or (S)-valine adsorbed on diatomaceous eaitii. Very recently, the optical resolution of crown ethers (/ S)-37 and (/ 5)-38, incorporating the elements of planar chirality in the form of a rron -doubly bridged ethylene unit, has been achieved (95) by HPLC on (+)-poly(triphenyl-methyl methacrylate). [Pg.229]

The enantioselective binding properties of certain chiral crown ethers have been employed in the resolution of amino add racemates. The racemic amino ester is adsorbed onto silica gel as its ammonium salt and eluted by a chloroform solution of the chiral crown ether. An excellent separation of the two enantiomers is achieved by this method (74JA7100). [Pg.760]


See other pages where Enantiomers crown ethers is mentioned: [Pg.63]    [Pg.187]    [Pg.157]    [Pg.262]    [Pg.24]    [Pg.25]    [Pg.59]    [Pg.55]    [Pg.16]    [Pg.433]    [Pg.39]    [Pg.73]    [Pg.329]    [Pg.134]    [Pg.473]    [Pg.617]    [Pg.392]    [Pg.395]    [Pg.401]    [Pg.405]    [Pg.215]    [Pg.216]    [Pg.24]    [Pg.64]    [Pg.226]    [Pg.194]    [Pg.264]    [Pg.124]    [Pg.157]    [Pg.745]    [Pg.745]    [Pg.222]    [Pg.35]   
See also in sourсe #XX -- [ Pg.1517 ]




SEARCH



Enantiomers ethers

© 2024 chempedia.info