Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dioxide Emissions

Utility systems as sources of waste. The principal sources of utility waste are associated with hot utilities (including cogeneration systems) and cold utilities. Furnaces, steam boilers, gas turbines, and diesel engines all produce waste from products of combustion. The principal problem here is the emission of carbon dioxide, oxides of sulfur and nitrogen, and particulates (metal oxides, unbumt... [Pg.290]

Fuel switch. The choice of fuel used in furnaces and steam boilers has a major effect on the gaseous utility waste from products of combustion. For example, a switch from coal to natural gas in a steam boiler can lead to a reduction in carbon dioxide emissions of typically 40 percent for the same heat released. This results from the lower carbon content of natural gas. In addition, it is likely that a switch from coal to natural gas also will lead to a considerable reduction in both SO, and NO, emissions, as we shall discuss later. [Pg.293]

The control of carbon dioxide emission from burning fossil fuels in power plants or other industries has been suggested as being possible with different methods, of which sequestration (i.e., collecting CO2 and injecting it to the depth of the seas) has been much talked about recently. Besides of the obvious cost and technical difficulties, this would only store, not dispose of, CO2 (although natural processes in the seas eventually can form carbonates, albeit only over very long periods of time). [Pg.217]

For my part, although I may be somewhat of a visionary, I see a solution to the problem by chemical recycling of excess carbon dioxide emissions into methyl alcohol and derived hydrocarbon products. [Pg.217]

Formation of emissions from fluidised-bed combustion is considerably different from that associated with grate-fired systems. Flyash generation is a design parameter, and typically >90% of all soHds are removed from the system as flyash. SO2 and HCl are controlled by reactions with calcium in the bed, where the lime-stone fed to the bed first calcines to CaO and CO2, and then the lime reacts with sulfur dioxide and oxygen, or with hydrogen chloride, to form calcium sulfate and calcium chloride, respectively. SO2 and HCl capture rates of 70—90% are readily achieved with fluidi2ed beds. The limestone in the bed plus the very low combustion temperatures inhibit conversion of fuel N to NO. ... [Pg.58]

A fluidized bed is an excellent medium for contacting gases with sohds, and this can be exploited in a combustor because sulfur dioxide emissions can be reduced by adding limestone, CaCO, or dolomite, CaCO MgCO, to the bed. [Pg.73]

Perhaps the biggest environmental challenge for ironmaking processes into the twenty-first century involves responding to the concerns about global warming. Ironmaking processes require the use of carbon-based reductants, and ultimately result in the emission of carbon dioxide. [Pg.422]

Total sulfur in air, most of which is sulfur dioxide, can be measured by burning the sample in a hydrogen-rich flame and measuring the blue chemiluminescent emission from sulfur atom combination to excited S2 (313). Concentrations of about 0.01 ppm can be detected. [Pg.276]

J. Lanier and co-workers, "Sulfur Dioxide and Nitrogen Oxide Emissions Control in a Coal-Eked MHD System," ASME Winter Annual Meeting Adanta, Ga., Dec. 1979. [Pg.438]

Air Pollution. Particulates and sulfur dioxide emissions from commercial oil shale operations would require proper control technology. Compliance monitoring carried out at the Unocal Parachute Creek Project for respirable particulates, oxides of nitrogen, and sulfur dioxide from 1986 to 1990 indicate a +99% reduction in sulfur emissions at the retort and shale oil upgrading faciUties. No violations for unauthorized air emissions were issued by the U.S. Environmental Protection Agency during this time (62). [Pg.355]

Emissions During Disposal and Incineration. The increasing use of modem incinerators to dispose of domestic waste results in complete combustion of plasticizers to carbon dioxide and water. The preponderance of plasticizer going into landfiUs is as plasticized PVC. Once a landfiU has been capped anaerobic conditions prevail and it is biologically relatively inactive. Under these conditions the main route by which organic components are removed from the landfiU contents is by ingress of water, extraction, and subsequent loss of water from the site to the environment. [Pg.132]

Commercial Hquid sodium alumiaates are normally analyzed for total alumiaa and for sodium oxide by titration with ethylene diaminetetraacetic acid [60-00-4] (EDTA) or hydrochloric acid. Further analysis iacludes the determiaation of soluble alumiaa, soluble siHca, total iasoluble material, sodium oxide content, and carbon dioxide. Aluminum and sodium can also be determiaed by emission spectroscopy. The total iasoluble material is determiaed by weighing the ignited residue after extraction of the soluble material with sodium hydroxide. The sodium oxide content is determiaed ia a flame photometer by comparison to proper standards. Carbon dioxide is usually determiaed by the amount evolved, as ia the Underwood method. [Pg.140]

Emissions control systems play an important role at most coal-fired power plants. For example, PC-fired plants sited in the United States require some type of sulfur dioxide control system to meet the regulations set forth in the Clean Air Act Amendments of 1990, unless the boiler bums low sulfur coal or benefits from offsets from other highly controlled boilers within a given utiUty system. Flue-gas desulfurization (FGD) is most commonly accomphshed by the appHcation of either dry- or wet-limestone systems. Wet FGD systems, also referred to as wet scmbbers, are the most effective solution for large faciUties. Modem scmbbers can typically produce a saleable waUboard-quaUty gypsum as a by-product of the SO2 control process (see SULFURREMOVAL AND RECOVERY). [Pg.10]

In 1990, a test using scrap tires (2x2 in. I DE) to generate steam for electricity was conducted at the Elexsys plant. The I DE replaced 20% of the plant s coal. Results showed that IDE is an environmentally sound fuel. Particulate emissions were reduced by the lower ash content of IDE, volatile organic compounds (VOC) were reduced because of more efficient burning of I DE compared to coal, and carbon dioxide emissions were reduced because I DE contains half the fixed carbon found in coal. Nitrogen oxide, chlorine emissions, and metals were also reduced, and ferrous metals and dioxins were nondetectable (7). [Pg.13]

Except for Pacific noncontiguous, which has a value of 2ero, sulfur dioxide emissions for all other census divisions are <0.5 total sulfur dioxide value... [Pg.90]

In the United States, amendments to the Clean Air Act in November 1990 limited the amount of sulfur dioxide emissions that coal-based power uthities could produce. The cost of compliance incurred by the uthities was expected to be passed along to the power consumers. The U.S. Bureau of Mines estimated that the requirements to limit sulfur dioxide emissions would increase the operational cost of certain shicon producers by up to 0.02/kg (31). [Pg.541]


See other pages where Dioxide Emissions is mentioned: [Pg.304]    [Pg.217]    [Pg.217]    [Pg.218]    [Pg.948]    [Pg.225]    [Pg.389]    [Pg.389]    [Pg.176]    [Pg.267]    [Pg.281]    [Pg.453]    [Pg.45]    [Pg.422]    [Pg.547]    [Pg.224]    [Pg.224]    [Pg.411]    [Pg.423]    [Pg.74]    [Pg.172]    [Pg.321]    [Pg.100]    [Pg.368]    [Pg.8]    [Pg.283]    [Pg.562]    [Pg.61]    [Pg.89]    [Pg.90]    [Pg.92]    [Pg.330]    [Pg.332]    [Pg.262]    [Pg.123]   
See also in sourсe #XX -- [ Pg.20 , Pg.36 , Pg.38 , Pg.50 , Pg.52 ]




SEARCH



© 2024 chempedia.info