Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emission spectroscopy, determination

Emission spectroscopy is a very useful analytical technique in determining the elemental composition of a sample. The emission may be produced in an electrical arc or spark but, since the mid-1960s, an inductively coupled plasma has increasingly been used. [Pg.66]

Analyses of alloys or ores for hafnium by plasma emission atomic absorption spectroscopy, optical emission spectroscopy (qv), mass spectrometry (qv), x-ray spectroscopy (see X-ray technology), and neutron activation are possible without prior separation of hafnium (19). Alternatively, the combined hafnium and zirconium content can be separated from the sample by fusing the sample with sodium hydroxide, separating silica if present, and precipitating with mandelic acid from a dilute hydrochloric acid solution (20). The precipitate is ignited to oxide which is analy2ed by x-ray or emission spectroscopy to determine the relative proportion of each oxide. [Pg.443]

In determining the purity or percentage of lead in lead and lead-base alloys, the impurities or minor components are deterrnined and the lead content calculated by difference. Quality control in lead production requires that the concentration of impurities meet standard ASTM specifications B29 (see Table 7). Analyses of the individual impurities are performed using various wet chemical procedures and instmmental methods such as emission spectroscopy. [Pg.52]

Analysis. Lithium can be detected by the strong orange-red emission of light in a flame. Emission spectroscopy allows very accurate determination of lithium and is the most commonly used analytical procedure. The red emission line at 670.8 nm is usually used for analytical determinations although the orange emission line at 610.3 nm is also strong. Numerous other methods for lithium determinations have been reviewed (49,50). [Pg.224]

Aluminum is best detected quaUtatively by optical emission spectroscopy. SoHds can be vaporized direcdy in a d-c arc and solutions can be dried on a carbon electrode. Alternatively, aluminum can be detected by plasma emission spectroscopy using an inductively coupled argon plasma or a d-c plasma. Atomic absorption using an aluminum hoUow cathode lamp is also an unambiguous and sensitive quaUtative method for determining alurninum. [Pg.105]

The sodium hydroxide is titrated with HCl. In a thermometric titration (92), the sibcate solution is treated first with hydrochloric acid to measure Na20 and then with hydrofluoric acid to determine precipitated Si02. Lower sibca concentrations are measured with the sibcomolybdate colorimetric method or instmmental techniques. X-ray fluorescence, atomic absorption and plasma emission spectroscopies, ion-selective electrodes, and ion chromatography are utilized to detect principal components as weU as trace cationic and anionic impurities. Eourier transform infrared, ft-nmr, laser Raman, and x-ray... [Pg.11]

Numerous methods have been pubUshed for the determination of trace amounts of tellurium (33—42). Instmmental analytical methods (qv) used to determine trace amounts of tellurium include atomic absorption spectrometry, flame, graphite furnace, and hydride generation inductively coupled argon plasma optical emission spectrometry inductively coupled plasma mass spectrometry neutron activation analysis and spectrophotometry (see Mass spectrometry Spectroscopy, optical). Other instmmental methods include polarography, potentiometry, emission spectroscopy, x-ray diffraction, and x-ray fluorescence. [Pg.388]

Finished zinc and zinc aHoys are usuaHy analyzed for metals other than zinc by emission spectroscopy and the zinc determined by difference. ASTM method E 27 describes a technique using a dissolved sample and photographic detection. The internal standard is the zinc line at 267.0 nm. However, procedures using soHd samples are generaHy preferred and photoelectric detection often replaces optical detection. Samples are cast and machined on the surface where the arc is stmck. Up to 15 elements can be determined in a few minutes by modem automatic spectrometers. ASTM gives wet chemical methods for metals other than zinc (79). [Pg.410]

Commercially produced calcium metal is analyzed for metallic impurities by emission spectroscopy. Carbon content is determined by combustion, whereas nitrogen is measured by Kjeldahl determination. [Pg.400]

Instrumental Quantitative Analysis. Methods such as x-ray spectroscopy, oaes, and naa do not necessarily require pretreatment of samples to soluble forms. Only reUable and verified standards are needed. Other instmmental methods that can be used to determine a wide range of chromium concentrations are atomic absorption spectroscopy (aas), flame photometry, icap-aes, and direct current plasma—atomic emission spectroscopy (dcp-aes). These methods caimot distinguish the oxidation states of chromium, and speciation at trace levels usually requires a previous wet-chemical separation. However, the instmmental methods are preferred over (3)-diphenylcarbazide for trace chromium concentrations, because of the difficulty of oxidizing very small quantities of Cr(III). [Pg.141]

Bromo-2-pyridyla2o)-5-diethylamiQophenol (5-Br-PADAP) is a very sensitive reagent for certain metals and methods for cobalt have been developed (23). Nitroso-naphthol is an effective precipitant for cobalt(III) and is used in its gravimetric determination (24,25). Atomic absorption spectroscopy (26,27), x-ray fluorescence, polarography, and atomic emission spectroscopy are specific and sensitive methods for trace level cobalt analysis (see... [Pg.379]

Colorimetric procedures are often used to determine copper in trace amounts. Extraction of copper using diethyldithiocarbamate can be quite selective (60,62), but the method using dithhone is preferred because of its greater sensitivity and selectivity (50—52). Atomic absorption spectroscopy, atomic emission spectroscopy, x-ray fluorescence, and polargraphy are specific and sensitive methods for the deterrnination of trace level copper. [Pg.256]

THE ELEMENT S FORMS OF PRESENCE DETERMINATION BY X-RAY EMISSION SPECTROSCOPY... [Pg.80]

Pretreatment of the collected particulate matter may be required for chemical analysis. Pretreatment generally involves extraction of the particulate matter into a liquid. The solution may be further treated to transform the material into a form suitable for analysis. Trace metals may be determined by atomic absorption spectroscopy (AA), emission spectroscopy, polarogra-phy, and anodic stripping voltammetry. Analysis of anions is possible by colorimetric techniques and ion chromatography. Sulfate (S04 ), sulfite (SO-, ), nitrate (NO3 ), chloride Cl ), and fluoride (F ) may be determined by ion chromatography (15). [Pg.206]

In Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), a gaseous, solid (as fine particles), or liquid (as an aerosol) sample is directed into the center of a gaseous plasma. The sample is vaporized, atomized, and partially ionized in the plasma. Atoms and ions are excited and emit light at characteristic wavelengths in the ultraviolet or visible region of the spectrum. The emission line intensities are proportional to the concentration of each element in the sample. A grating spectrometer is used for either simultaneous or sequential multielement analysis. The concentration of each element is determined from measured intensities via calibration with standards. [Pg.48]

With flame emission spectroscopy, there is greater likelihood of spectral interferences when the line emission of the element to be determined and those due to interfering substances are of similar wavelength, than with atomic absorption spectroscopy. Obviously some of such interferences may be eliminated by improved resolution of the instrument, e.g. by use of a prism rather than a filter, but in certain cases it may be necessary to select other, non-interfering, lines for the determination. In some cases it may even be necessary to separate the element to be determined from interfering elements by a separation process such as ion exchange or solvent extraction (see Chapters 6, 7). [Pg.792]

In order to supplement micro-mechanical investigations and advance knowledge of the fracture process, micro-mechanical measurements in the deformation zone are required to determine local stresses and strains. In TPs, craze zones can develop that are important microscopic features around a crack tip governing strength behavior. For certain plastics fracture is preceded by the formation of a craze zone that is a wedge shaped region spanned by oriented micro-fibrils. Methods of craze zone measurements include optical emission spectroscopy, diffraction... [Pg.299]

The analysis of phosphates and phosphonates is a considerably complex task due to the great variety of possible molecular structures. Phosphorus-containing anionics are nearly always available as mixtures dependent on the kind of synthesis carried out. For analytical separation the total amount of phosphorus in the molecule has to be ascertained. Thus, the organic and inorganic phosphorus is transformed to orthophosphoric acid by oxidation. The fusion of the substance is performed by the addition of 2 ml of concentrated sulfuric acid to — 100 mg of the substance. The black residue is then oxidized by a mixture of nitric acid and perchloric acid. The resulting orthophosphate can be determined at 8000 K by atom emission spectroscopy. The thermally excited phosphorus atoms emit a characteristic line at a wavelength of 178.23 nm. The extensity of the radiation is used for quantitative determination of the phosphorus content. [Pg.616]

The neutral surfactant is measured after fixing of the ionic substances on a combined anionic/cationic ion exchange column. Volatile substances in the eluate are determined by gas chromatography and nonvolatile substances are measured gravimetrically. In the bulk of the neutral compounds phosphoric acid triesters may be present. This part is additionally determined by atom emission spectroscopy. [Pg.617]

Stabilisers are usually determined by a time-consuming extraction from the polymer, followed by an IR or UV spectrophotometric measurement on the extract. Most stabilisers are complex aromatic compounds which exhibit intense UV absorption and therefore should show luminescence in many cases. The fluorescence emission spectra of Irgafos 168 and its phosphate degradation product, recorded in hexane at an excitation wavelength of 270 nm, are not spectrally distinct. However, the fluorescence quantum yield of the phosphate greatly exceeds that of the phosphite and this difference may enable quantitation of the phosphate concentration [150]. The application of emission spectroscopy to additive analysis was illustrated for Nonox Cl (/V./V -di-/i-naphthyl-p-phcnylene-diamine) [149] with fluorescence ex/em peaks at 392/490 nm and phosphorescence ex/em at 382/516 nm. Parker and Barnes [151] have reported the use of fluorescence for the determination of V-phenyl-l-naphthylamine and N-phenyl-2-naphthylamine in extracted vulcanised rubber. While pine tar and other additives in the rubber seriously interfered with the absorption spectrophotometric method this was not the case with the fluoromet-ric method. [Pg.322]

Plasma sources were developed for emission spectrometric analysis in the late-1960s. Commercial inductively coupled and d.c. plasma spectrometers were introduced in the mid-1970s. By comparison with AAS, atomic plasma emission spectroscopy (APES) can achieve simultaneous multi-element measurement, while maintaining a wide dynamic measurement range and high sensitivities and selectivities over background elements. As a result of the wide variety of radiation sources, optical atomic emission spectrometry is very suitable for multi-element trace determinations. With several techniques, absolute detection limits are below the ng level. [Pg.614]

In addition to measuring total recombination coefficients, experimentalists seek to determine absolute or relative yields of specific recombination products by emission spectroscopy, laser induced fluorescence, and optical absorption. In most such measurements, the products suffer many collisions between their creation and detection and nothing can be deduced about their initial translational energies. Limited, but important, information on the kinetic energies of the nascent products can be obtained by examination of the widths of emitted spectral lines and by... [Pg.51]


See other pages where Emission spectroscopy, determination is mentioned: [Pg.44]    [Pg.226]    [Pg.381]    [Pg.177]    [Pg.85]    [Pg.288]    [Pg.606]    [Pg.226]    [Pg.1034]    [Pg.773]    [Pg.783]    [Pg.793]    [Pg.181]    [Pg.2]    [Pg.358]    [Pg.250]    [Pg.266]    [Pg.268]    [Pg.152]    [Pg.42]    [Pg.284]    [Pg.443]    [Pg.302]   


SEARCH



Emission spectroscopy)

Emission spectroscopy, determination anions

© 2024 chempedia.info