Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron transfer temperature dependence

The overall rate of an electrochemical reaction is measured by the current flow through the cell. In order to make valid comparisons between different electrode systems, this current is expressed as cunent density,/, the current per unit area of electrode surface. Tire current density that can be achieved in an electrochemical cell is dependent on many factors. The rate constant of the initial electron transfer step depends on the working electrode potential, Tlie concentration of the substrate maintained at the electrode surface depends on the diffusion coefficient, which is temperature dependent, and the thickness of the diffusion layer, which depends on the stirring rate. Under experimental conditions, current density is dependent on substrate concentration, stirring rate, temperature and electrode potential. [Pg.4]

In general, electrochemical systems are heterogeneous and involve at least one (or both) of the fundamental processes - mass transport and an electron-transfer reaction. Moreover, electrochemical reactions involve charged species, so the rate of the electron-transfer reaction depends on the electric potential difference between the phases (e.g. between the electrode surface and the solution). The mass transport processes mainly include diffusion, conduction, and convection, and should be taken into account if the electron-transfer reaction properties are to be extracted from the experimental measurements. The proper control of the mass transport processes seems to be one of the main problems of high-temperature electrochemical studies. [Pg.726]

The metal reduction of the polycyclic system is usually carried out in an ether solvent and by an alkali metal at low temperature (—78 °C). When potassium metal is applied it is best to prepare a metal mirror. Sodium and lithium react, either directly in the form of a metal wire, or after treatment in an induction furnace. Cesium is prepared by thermolysis of cesium azide. It has recently been found that the application of an ultrasonic bath facilitates the reaction and avoids side reactions. The reaction can be carried out in a modified NMR tube or in an ESR cavity. Diamagnetic ions are prepared in extended NMR tubes to which the metal is extruded and sealed under vacuum. Reaction rates are difficult to compare as the electron-transfer process depends on various experimental conditions such as concentration, temperature, the presence of impurities, the solvent and the nature of the metal surface. It may take from minutes to days to form the first radical-anion the second step then follows and can sometimes be rather slow 10 13). [Pg.102]

The equation does not take into account such pertubation factors as steric effects, solvent effects, and ion-pair formation. These factors, however, may be neglected when experiments are carried out in the same solvent at the same temperature and concentration for an homogeneous set of substrates. So, for a given ambident nucleophile the rate ratio kj/kj will depend on A and B, which vary with (a) the attacked electrophilic center, (b) the solvent, and (c) the counterpart cationic species of the anion. The important point in this kind of study is to change only one parameter at a time. This simple rule has not always been followed, and little systematic work has been done in this field (12) stiH widely open after the discovery of the role played by single electron transfer mechanism in ambident reactivity (1689). [Pg.6]

Conversely, the use of elevated temperatures will be most advantageous when the current is determined by the rate of a preceding chemical reaction or when the electron transfer occurs via an indirect route involving a rate-determining chemical process. An example of the latter is the oxidation of amines at a nickel anode where the limiting current shows marked temperature dependence (Fleischmann et al., 1972a). The complete anodic oxidation of organic compounds to carbon dioxide is favoured by an increase in temperature and much fuel cell research has been carried out at temperatures up to 700°C. [Pg.202]

The major effect of an increase in temperature on the actual electron transfer process is to increase A , and hence to enhance the reversibility of the electrode process. The reversible potential is, however, itself temperature dependent, and... [Pg.203]

MgATP hydrolysis and electron transfer between the two proteins seems not to be direct and the order of reactions may depend on the precise conditions of the experiment at low temperature, electron transfer seems to be reversible (see Ref. 12) for a discussion). One innovation is incorporation of data in which the release of inorganic phosphate was monitored. With other MgATP hydrolyzing enzymes, this step is often the work step in which the energy released by MgATP hydrolysis is utilized. With nitrogenase this step takes place before the dissociation of the two proteins 106). [Pg.186]

EPR studies on electron transfer systems where neighboring centers are coupled by spin-spin interactions can yield useful data for analyzing the electron transfer kinetics. In the framework of the Condon approximation, the electron transfer rate constant predicted by electron transfer theories can be expressed as the product of an electronic factor Tab by a nuclear factor that depends explicitly on temperature (258). On the one hand, since iron-sulfur clusters are spatially extended redox centers, the electronic factor strongly depends on how the various sites of the cluster are affected by the variation in the electronic structure between the oxidized and reduced forms. Theoret-... [Pg.478]

Fig. 2. Surface temperature dependence of the vibrational excitation of NO(v = 0 — 1) in collisions with a clean Ag(lll) surface. The observed thermal activation was attributed to hot electron-hole-pair recombination transferring energy to NO vibration. This work provided some of the first strong evidence that metal electrons can interact with an adsorbate molecule strongly enough to change its vibrational quantum numbers. (See Ref. 24.)... Fig. 2. Surface temperature dependence of the vibrational excitation of NO(v = 0 — 1) in collisions with a clean Ag(lll) surface. The observed thermal activation was attributed to hot electron-hole-pair recombination transferring energy to NO vibration. This work provided some of the first strong evidence that metal electrons can interact with an adsorbate molecule strongly enough to change its vibrational quantum numbers. (See Ref. 24.)...
The donor-acceptor complexes [Ir(/r-dmpz)(CO)(PPh2 0(CH2)2R )]2 exhibit photo-induced electron-transfer rate constants of 1012s—1 and charge recombination rates slower than 2 x 10los-1 when R = pyridine and 4-phenylpyridine.534 Further studies on these complexes revealed that recombination reactions were temperature dependent and slower for the deuterated acceptors.535... [Pg.208]

Instead of the quantity given by Eq. (15), the quantity given by Eq. (10) was treated as the activation energy of the process in the earlier papers on the quantum mechanical theory of electron transfer reactions. This difference between the results of the quantum mechanical theory of radiationless transitions and those obtained by the methods of nonequilibrium thermodynamics has also been noted in Ref. 9. The results of the quantum mechanical theory were obtained in the harmonic oscillator model, and Eqs. (9) and (10) are valid only if the vibrations of the oscillators are classical and their frequencies are unchanged in the course of the electron transition (i.e., (o k = w[). It might seem that, in this case, the energy of the transition and the free energy of the transition are equal to each other. However, we have to remember that for the solvent, the oscillators are the effective ones and the parameters of the system Hamiltonian related to the dielectric properties of the medium depend on the temperature. Therefore, the problem of the relationship between the results obtained by the two methods mentioned above deserves to be discussed. [Pg.104]

The first photophysical investigation performed on stereochemically pure metal-based dendrimers having a metal complex as the core is that concerning the tetranuclear species based on a [Ru(tpphz)3]2+ core (tpphz=tetrapyrido[3,2-a 2, 3 -c 3",2"-h 2",3"j]phenazine) [67]. Dendrimer 45 is an example of this family. In this compound, two different types of MLCT excited states, coupled by a medium- and temperature-dependent photoinduced electron transfer, are responsible for the luminescence behavior. However, the properties of all the optical isomers of this family of compounds are very similar. This finding is also in... [Pg.233]

For convenience of discussion, a schematic diagram of bacterial photosynthetic RC is shown in Fig. 1 [29]. Conventionally, P is used to represent the special pair, which consists of two bacterial chlorophylls separated by 3 A, and B and H are used to denote the bacteriochlorophyll and bacteriopheophytin, respectively. The RC is embedded in a protein environment that comprise L and M branches. The initial electron transfer (ET) usually occurs from P to Hl along the L branch in 1—4 picoseconds (ps) and exhibits the inverse temperature dependence that is, the lower the temperature, the faster the ET. It should be noted that the distance between P and Hl is about 15 A [53-55]. [Pg.2]

In summary, to apply the Marcus theory of electron transfer, it is necessary to see if the temperature dependence of the electron transfer rate constant can be described by a function of the Arrhenius form. When this is valid, one can then determine the activation energy AEa only under this condition can we use AEa to determine if the parabolic dependence on AG/ is valid and if the reaction coordinate is defined. [Pg.31]

The thermal electron-transfer (ET) via the charge-transfer (CT) equilibrium depicted in equation (86) is established by temperature dependent (UV-vis) spectral studies. For example, an equimolar mixture of hydroquinone ether MA and NO + salt at low temperatures (—78°C) immediately forms the purple [MA, NO+] charge-transfer complex (lmax = 360 nm). However, upon warming the solution an orange-red color of the MA+ cation radical (Amax = 518 nm) develops, and the intensity increases with increasing temperature. Moreover, the identity of liberated NO is confirmed by the quantitative analysis of the head gas with a diagnostic N—O stretching band at 1876 cm -1 in the infrared... [Pg.288]


See other pages where Electron transfer temperature dependence is mentioned: [Pg.3]    [Pg.426]    [Pg.5508]    [Pg.210]    [Pg.426]    [Pg.2948]    [Pg.16]    [Pg.285]    [Pg.2410]    [Pg.424]    [Pg.6]    [Pg.230]    [Pg.1004]    [Pg.201]    [Pg.180]    [Pg.266]    [Pg.34]    [Pg.35]    [Pg.328]    [Pg.250]    [Pg.545]    [Pg.163]    [Pg.1004]    [Pg.369]    [Pg.129]    [Pg.390]    [Pg.255]    [Pg.4]    [Pg.288]    [Pg.319]    [Pg.357]    [Pg.42]    [Pg.302]    [Pg.26]   
See also in sourсe #XX -- [ Pg.36 ]

See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Electron dependence

Electron temperature

Electron transfer dependence

Electronic temperature

© 2024 chempedia.info