Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron-transfer reactions dependence

Table II presents the vadues of v, the rate constant for the electron transfer reaction with the donor and acceptor in contact, calculated by deconvolution of the fluorescence decay curves for a number of excited porphyrin-cOkyl halide systems. It appears that the rate parauneter depends strongly on the calculated exothermicity for these reactions. Parauneter i/ contadns information about the Framck-Condon factor of the electron-tramsfer reaction, which is in itself dependent on the reaction exothermicity and reorgauiization energy (22.23). Whether the rate constauit for the electron-transfer reactions depends on the exothermicity in the manner predicted by theory, that is with a simple Gaussian dependence (22), cannot be ainswered at present because of the uncertainties in the energetics of the particular reactions studied here. Table II presents the vadues of v, the rate constant for the electron transfer reaction with the donor and acceptor in contact, calculated by deconvolution of the fluorescence decay curves for a number of excited porphyrin-cOkyl halide systems. It appears that the rate parauneter depends strongly on the calculated exothermicity for these reactions. Parauneter i/ contadns information about the Framck-Condon factor of the electron-tramsfer reaction, which is in itself dependent on the reaction exothermicity and reorgauiization energy (22.23). Whether the rate constauit for the electron-transfer reactions depends on the exothermicity in the manner predicted by theory, that is with a simple Gaussian dependence (22), cannot be ainswered at present because of the uncertainties in the energetics of the particular reactions studied here.
According to thermodynamics, the feasibility of an electron transfer reaction depends on the free energy change AG associated with it. [Pg.17]

In general, electrochemical systems are heterogeneous and involve at least one (or both) of the fundamental processes - mass transport and an electron-transfer reaction. Moreover, electrochemical reactions involve charged species, so the rate of the electron-transfer reaction depends on the electric potential difference between the phases (e.g. between the electrode surface and the solution). The mass transport processes mainly include diffusion, conduction, and convection, and should be taken into account if the electron-transfer reaction properties are to be extracted from the experimental measurements. The proper control of the mass transport processes seems to be one of the main problems of high-temperature electrochemical studies. [Pg.726]

The rate of electron transfer reactions depends on the difference in the redox potentials of educts and products. Since an alkyl radical possesses an unpaired electron in a non-bonding orbital, electron transfer reactions to many metals salts often occur with high rates. The higher are the SOMO energies of the radicals, the faster is the electron transfer. [Pg.27]

Clegg AD, Rees NV, Klymenko OV, Coles BA, Compton RG (2004) Marcus theory of outer-sphere heterogeneous electron transfer reactions dependence of the standard electrochemical rate constant on the hydrodynamic radius from high precision measurements of the oxidation of anthracene and its derivatives in nonaqueous solvents using the high-speed channel electrode. J Am Chem Soc 126(19) 6185-6192... [Pg.123]

Sekiguchi S, Kobori Y, Akiyama K and Tero-Kubota S 1998 Marcus free energy dependence of the sign of exchange interactions in radical ion pairs generated by photoinduced electron transfer reactions J. Am. Chem. Soc. 120 1325-6... [Pg.1619]

A number of different types of experiment can be designed, in which disc and ring can either be swept to investigate the potential region at which the electron transfer reactions occur, or held at constant potential (under mass-transport control), depending on the infomiation sought. [Pg.1937]

Electron transfer reaction rates can depend strongly on tire polarity or dielectric properties of tire solvent. This is because (a) a polar solvent serves to stabilize botli tire initial and final states, tluis altering tire driving force of tire ET reaction, and (b) in a reaction coordinate system where the distance between reactants and products (DA and... [Pg.2984]

Since the electrostatic potential sharply decreases with increasing distance from the polyelectrolyte cylinder, the degree of reactivity modification by functional groups fixed to the polyion is strongly dependent on the distance from the cylinder surface. Considerable electrostatic potential effects on the photoinduced forward and thermal back electron transfer reactions, which will be discussed in the following chapters, can be attributed to the functional chromophore groups directly attached to the polyelectrolyte back-bone through covalent bonds. [Pg.62]

How deeply one wishes to query the mechanism depends on the detail sought. In one sense, the quest is never done a finer and finer resolution of the mechanism may be obtained with further study. For example, the rates and mechanisms of electron transfer reactions have been studied experimentally and theoretically since the 1950s. but the research continues unabated as issues of ever finer detail and broader import are examined. The same can be said of other reactions—nucleophilic substitution, hydrolysis, etc. [Pg.2]

The height of the potential barrier is lower than that for nonadiabatic reactions and depends on the interaction between the acceptor and the metal. However, at not too large values of the effective eiectrochemical Landau-Zener parameter the difference in the activation barriers is insignihcant. Taking into account the fact that the effective eiectron transmission coefficient is 1 here, one concludes that the rate of the adiabatic outer-sphere electron transfer reaction is practically independent of the electronic properties of the metal electrode. [Pg.653]

In a simple electron transfer reaction, the reactant is situated in front of the electrode, and the electron is transferred when there is a favorable solvent fluctuation. In contrast, during ion transfer, the reactant itself moves from the bulk of the solution to the double layer, and then becomes adsorbed on, or incorporated into, the electrode. Despite these differences, ion transfer can be described by essentially the same formalism [Schmickler, 1995], but the interactions both with the solvent and with the metal depend on the position of the ion. In addition, the electronic level on the reactant depends on the local electric potential in the double layer, which also varies with the distance. These complications make it difficult to perform quantitative calculations. [Pg.40]

According to the Marcus theory [9], the electron transfer rate depends upon the reaction enthalpy (AG), the electronic coupling (V) and the reorganization energy (A). By changing the electron donor and the bridge we measured the influence of these parameters on the charge transfer rate. The re-... [Pg.40]

Instead of the quantity given by Eq. (15), the quantity given by Eq. (10) was treated as the activation energy of the process in the earlier papers on the quantum mechanical theory of electron transfer reactions. This difference between the results of the quantum mechanical theory of radiationless transitions and those obtained by the methods of nonequilibrium thermodynamics has also been noted in Ref. 9. The results of the quantum mechanical theory were obtained in the harmonic oscillator model, and Eqs. (9) and (10) are valid only if the vibrations of the oscillators are classical and their frequencies are unchanged in the course of the electron transition (i.e., (o k = w[). It might seem that, in this case, the energy of the transition and the free energy of the transition are equal to each other. However, we have to remember that for the solvent, the oscillators are the effective ones and the parameters of the system Hamiltonian related to the dielectric properties of the medium depend on the temperature. Therefore, the problem of the relationship between the results obtained by the two methods mentioned above deserves to be discussed. [Pg.104]

D.R. McMillin, Purdue University In addition to the charge effects discussed by Professor Sykes, I would like to add that structural effects may help determine electron transfer reactions between biological partners. A case in point is the reaction between cytochrome C551 and azurin where, in order to explain the observed kinetics, reactive and unreactive forms of azurin have been proposed to exist in solution (JL). The two forms differ with respect to the state of protonation of histidine-35 and, it is supposed, with respect to conformation as well. In fact, the lH nmr spectra shown in the Figure provide direct evidence that the nickel(II) derivative of azurin does exist in two different conformations, which interconvert slowly on the nmr time-scale, depending on the state of protonation of the His35 residue (.2) As pointed out by Silvestrini et al., such effects could play a role in coordinating the flow of electrons and protons to the terminal acceptor in vivo. [Pg.191]


See other pages where Electron-transfer reactions dependence is mentioned: [Pg.439]    [Pg.188]    [Pg.97]    [Pg.5512]    [Pg.505]    [Pg.5511]    [Pg.194]    [Pg.281]    [Pg.9]    [Pg.439]    [Pg.188]    [Pg.97]    [Pg.5512]    [Pg.505]    [Pg.5511]    [Pg.194]    [Pg.281]    [Pg.9]    [Pg.415]    [Pg.416]    [Pg.943]    [Pg.125]    [Pg.44]    [Pg.1004]    [Pg.227]    [Pg.113]    [Pg.592]    [Pg.665]    [Pg.1004]    [Pg.29]    [Pg.353]    [Pg.204]    [Pg.67]    [Pg.648]    [Pg.918]    [Pg.295]    [Pg.288]    [Pg.11]    [Pg.92]    [Pg.76]    [Pg.483]    [Pg.570]    [Pg.171]   
See also in sourсe #XX -- [ Pg.115 , Pg.116 , Pg.117 , Pg.118 , Pg.119 , Pg.120 ]




SEARCH



Electron dependence

Electron transfer dependence

Reaction dependence

© 2024 chempedia.info