Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thin films, electrochemistry

In a similar way, electrochemistry may provide an atomic level control over the deposit, using electric potential (rather than temperature) to restrict deposition of elements. A surface electrochemical reaction limited in this manner is merely underpotential deposition (UPD see Sect. 4.3 for a detailed discussion). In ECALE, thin films of chemical compounds are formed, an atomic layer at a time, by using UPD, in a cycle thus, the formation of a binary compound involves the oxidative UPD of one element and the reductive UPD of another. The potential for the former should be negative of that used for the latter in order for the deposit to remain stable while the other component elements are being deposited. Practically, this sequential deposition is implemented by using a dual bath system or a flow cell, so as to alternately expose an electrode surface to different electrolytes. When conditions are well defined, the electrolytic layers are prone to grow two dimensionally rather than three dimensionally. ECALE requires the definition of precise experimental conditions, such as potentials, reactants, concentration, pH, charge-time, which are strictly dependent on the particular compound one wants to form, and the substrate as well. The problems with this technique are that the electrode is required to be rinsed after each UPD deposition, which may result in loss of potential control, deposit reproducibility problems, and waste of time and solution. Automated deposition systems have been developed as an attempt to overcome these problems. [Pg.162]

Gichuhi A, Boone BE, Demir U, Shannon C (1998) Electrochemistry of S Adlayers at under-potentially deposited Cd on Au(lll) Implications for the electrosynthesis of high-quality CdS thin films. J Phys Chem B 102 6499-6506... [Pg.200]

Y.D. Jin, Y. Shao, and S.J. Dong, Direct electrochemistry and surface plasmon resonance characterization of alternate layer-by-layer self-assembled DNA-myoglobin thin films on chemically modified gold surfaces. Langmuir 19, 4771—4777 (2003). [Pg.594]

This definition requires some explanation. (1) By interface we denote those regions of the two adjoining phases whose properties differ significantly from those of the bulk. These interfacial regions can be quite extended, particularly in those cases where a metal or semiconducting electrode is covered by a thin film. Sometimes the term interphase is used to indicate the spatial extention. (2) It would have been more natural to restrict the definition to the interface between an electronic and an ionic conductor only, and, indeed, this is generally what we mean by the term electrochemical interface. However, the study of the interface between two immiscible electrolyte solutions is so similar that it is natural to include it under the scope of electrochemistry. [Pg.3]

The band gap, determined as the onset of the absorption band in thin films is 2.95 eV (425 nm). Janietz et al. [252] used the onset of the redox waves in CV experiments to estimate the /P and Ea energies of the dialkyl-PFs (Figure 2.11). The gap between the obtained energy levels (5.8 eV for 7P and 2.12 eV for EA) IP—EA 3.8 eV is substantially higher than the optical band gap. Although optical absorption and electrochemistry test two physically different processes (vertical electron excitation and adiabatic ionization) and are not expected to be the same,... [Pg.120]

One final issue remains to be resolved Of the portion of the AEpi that is due to resistance, what part is caused by solution resistance and what part is caused by film resistance To explore this issue we examined the electrochemistry of a reversible redox couple (ferrocene/ferricinium) at a polished glassy carbon electrode in the electrolyte used for the TiS 2 electrochemistry. At a peak current density essentially identical to the peak current density for the thin film electrode in Fig. 27 (0.5 mV see ), this reversible redox couple showed a AEpi of 0.32 V (without application of positive feedback). Since this is a reversible couple (no contribution to the peak separation due to slow kinetics) and since there is no film on the electrode (no contribution to the peak separation due to film resistance), the largest portion of this 0.32 V is due to solution resistance. However, the reversible peak separation for a diffusional one-electron redox process is —0.06 V. This analysis indicates that we can anticipate a contribution of 0.32 V -0.06 V = 0.26 V from solution resistance in the 0.5 mV sec control TiS2 voltammogram in Fig. 27. [Pg.61]

The author was brought up in Hastings, on England s south coast, where he attended a local comprehensive school. Despite this education, he achieved entrance to the University of Exeter to read Chemistry. Having obtained a B.Sc. degree and then a doctorate (in 1989) on the electrochemistry of the viologens, he was awarded a fellowship at the University of Aberdeen to study the electrochromism of thin films of tungsten trioxide. [Pg.381]

Wilson, M. S., and Gottesfeld, S. Thin film catalyst layers for polymer electrolyte fuel cell electrodes. Journal of Applied Electrochemistry 1992 22 1-7. [Pg.97]

Without doubt, the advent of carbon nanotubes has opened up iimovative perspectives for research and development of carbon electrodes. In this chapter, we have attempted to highlight the electrochemical properties of carbon nanotubes by rooting them mainly on their structural, electronic and chemical properties. If chirality of SWNTs could be controlled, it would be possible to probe electrochemically the unique electronic properties of the tubes with their corresponding unique DOS distribution and establish direct correlations between electronic structure and electrochemistry. However, so far, most of their electrochemical applications are based on ensembles of CNTs (MWNTs or SWNTs) in thin films supported on conductive surfaces or composites. Such ensembles, not so well defined from the structural point of view, contain a mixture of tubes with different diameters and DOS... [Pg.160]

Solubility data (pA sp) for two dozen hexacyanoferrate(II) and hexacyanoferrate(III) salts, and Pourbaix (pe/pH) diagrams for iron-cyanide-water, iron-sulfide-cyanide-(hydr)oxide, iron-arsenate-cyanide-(hydr)oxide, and iron-copper-cyanide-sulfide-(hydr)oxide, are given in a review ostensibly dedicated to hydrometallurgical extraction of gold and silver. " The electrochemistry of Prussian Blue and related complexes, in the form of thin films on electrodes, has been reviewed. ... [Pg.422]

Electropolymerized thin films of Zn(II)-4,9,16,23-tetraaminophthalocyanine immersed in a solution of relatively high pH have been studied using electrochemistry and spectroelectrochemistry [483]. [Pg.755]

Electrochemical deposition has attracted increasing attention as a technique for nanowire fabrication. Traditionally, electrochemistry has been used to grow thin films on conducting surfaces. Because electrochemical... [Pg.177]

One may expect that future work on the electrochemistry of diamond should take two paths, namely, an extensive investigation (search for new processes and applications of the carbon allotropes in the electrochemical science and engineering) and intensive one (elucidation of the reaction mechanisms, revealing the effects of crystal structure and semiconductor properties on the electrochemical behavior of diamond and related materials). It is expected that better insight into these effects will result in the development of standard procedures for thin-film-electrodes growth, their characterization, and surface preparation. [Pg.263]

The overview by Pleskov covers the literature on electrochemical behavior of synthetic diamond films, as well as the use of electrochemical methods in their characterization. The rapid advancement of the field of diamond electrochemistry was triggered by progress in the technology of deposition of polycrystalline diamond thin films on diamond and other substrates. Advances around the world have by now led to formation of a self-consistent, but as yet incomplete, view of electrochemical behavior of diamond. While discrepancies and scatter between data from different research groups still exist, the rapid advance in film quality and in reliable methods of evaluation point to a promising future. [Pg.380]

The surface force apparatus is now being used routinely to study the equation of state of solutions confined between opposed, molecularly thin solid films. The apparatus is also used in one laboratory to study electrochemistry of thin films at electrodes a few nanometers thick and in a few other laboratories to study the behavior of molecularly thin films subjected to shear and flow [7]. [Pg.172]

Conductive diamond thin-films in electrochemistry. Diam. Relat. Mater. 12,1940-1949. Internet presentation (2005) Advanced systems for substrate sterilization. http //www.substrate-tech.com/producers.html (access 21. Feb. 2005). [Pg.200]


See other pages where Thin films, electrochemistry is mentioned: [Pg.286]    [Pg.286]    [Pg.395]    [Pg.1948]    [Pg.544]    [Pg.552]    [Pg.69]    [Pg.19]    [Pg.93]    [Pg.208]    [Pg.325]    [Pg.370]    [Pg.250]    [Pg.257]    [Pg.592]    [Pg.125]    [Pg.563]    [Pg.564]    [Pg.585]    [Pg.507]    [Pg.316]    [Pg.261]    [Pg.46]    [Pg.717]    [Pg.126]    [Pg.964]    [Pg.154]    [Pg.238]    [Pg.351]    [Pg.588]    [Pg.96]    [Pg.561]    [Pg.1208]    [Pg.54]   
See also in sourсe #XX -- [ Pg.304 , Pg.305 , Pg.306 , Pg.307 , Pg.308 , Pg.309 , Pg.310 , Pg.311 , Pg.312 , Pg.313 , Pg.314 ]




SEARCH



Electrochemistry of Cyclodextrin Thin Films

Electrochemistry of Thin Redox-Active Polymer films

Electrochemistry of thin films

© 2024 chempedia.info