Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical processes mixed potential

Electrochemical Kinetics of Corrosion Processes Mixed Potential Model of Corrosion. [Pg.58]

Mital et al. [40] studied the electroless deposition of Ni from DMAB and hypophosphite electrolytes, employing a variety of electrochemical techniques. They concluded that an electrochemical mechanism predominated in the case of the DMAB reductant, whereas reduction by hypophosphite was chemically controlled. The conclusion was based on mixed-potential theory the electrochemical oxidation rate of hypophosphite was found, in the absence of Ni2 + ions, to be significantly less than its oxidation rate at an equivalent potential during the electroless process. These authors do not take into account the possible implication of Ni2+ (or Co2+) ions to the mechanism of electrochemical reactions of hypophosphite. [Pg.256]

Paunovic [23] and Saito [24] first advanced the notion that an electroless deposition process could be modeled using a simple electrochemical approach. They reasoned that the potential of a surface undergoing electroless deposition could be regarded as a mixed potential intermediate in value between the potentials of its constituent anodic and cathodic partial reactions. These authors employed the mixed potential concept of corrosion reactions first outlined in a systematic manner by Wagner and... [Pg.228]

The incorporation of a third element, e.g. Cu, in electroless Ni-P coatings has been shown to improve thermal stability and other properties of these coatings [99]. Chassaing et al. [100] carried out an electrochemical study of electroless deposition of Ni-Cu-P alloys (55-65 wt% Ni, 25-35 wt% Cu, 7-10 wt% P). As mentioned earlier, pure Cu surfaces do not catalyze the oxidation of hypophosphite. They observed interactions between the anodic and cathodic processes both reactions exhibited faster kinetics in the full electroless solutions than their respective half cell environments (mixed potential theory model is apparently inapplicable). The mechanism responsible for this enhancement has not been established, however. It is possible that an adsorbed species related to hypophosphite mediates electron transfer between the surface and Ni2+ and Cu2+, rather in the manner that halide ions facilitate electron transfer in other systems, e.g., as has been recently demonstrated in the case of In electrodeposition from solutions containing Cl [101]. [Pg.254]

The mixed potential theory (MPT) model has stimulated much research in electroless deposition from an electrochemical standpoint. In this sense, the MPT model has been of considerable value in promoting our understanding of the electroless deposition process. [Pg.269]

The mixed-potential model demonstrated the importance of electrode potential in flotation systems. The mixed potential or rest potential of an electrode provides information to determine the identity of the reactions that take place at the mineral surface and the rates of these processes. One approach is to compare the measured rest potential with equilibrium potential for various processes derived from thermodynamic data. Allison et al. (1971,1972) considered that a necessary condition for the electrochemical formation of dithiolate at the mineral surface is that the measmed mixed potential arising from the reduction of oxygen and the oxidation of this collector at the surface must be anodic to the equilibrium potential for the thio ion/dithiolate couple. They correlated the rest potential of a range of sulphide minerals in different thio-collector solutions with the products extracted from the surface as shown in Table 1.2 and 1.3. It can be seen from these Tables that only those minerals exhibiting rest potential in excess of the thio ion/disulphide couple formed dithiolate as a major reaction product. Those minerals which had a rest potential below this value formed the metal collector compoimds, except covellite on which dixanthogen was formed even though the measured rest potential was below the reversible potential. Allison et al. (1972) attributed the behavior to the decomposition of cupric xanthate. [Pg.9]

It has been shown in the previous chapters that the product of the electrochemical reactions in the sulphide flotation system is determined by the mixed potential of the flotation pulp. The value of the potential is dependent on the equilibrium of anodic and cathodic process existing in the pulp. In general, the most important cathodic reaction existing in the pulp is the oxygen reduction. To rewrite Eq. (1-1) as the following ... [Pg.220]

A series of nucleation and growth models was developed by, for example, Bewick et al. (11), Armstrong and Harrison (16), and Scharifker and Hills (17). Amblart et al. (18) have shown that nickel epitaxial growth starts with the formation of three-dimensional epitaxial crystallites. An electrochemical model for the process of electroless metal depositions (mixed-potential theory) was suggested by Paunovic (14) and Saito (14b). [Pg.4]

An electrochemical model for the process of electroless metal deposition was suggested by Paunovic (10) and Saito (8) on the basis of the Wagner-Traud (1) mixed-potential theory of corrosion processes. According to the mixed-potential theory of electroless deposition, the overall reaction given by Eq. (8.2) can be decomposed into one reduction reaction, the cathodic partial reaction. [Pg.140]

Steady-State Kinetics, There are two electrochemical methods for determination of the steady-state rate of an electrochemical reaction at the mixed potential. In the first method (the intercept method) the rate is determined as the current coordinate of the intersection of the high overpotential polarization curves for the partial cathodic and anodic processes, measured from the rest potential. In the second method (the low-overpotential method) the rate is determined from the low-overpotential polarization data for partial cathodic and anodic processes, measured from the mixed potential. The first method was illustrated in Figures 8.3 and 8.4. The second method is discussed briefly here. Typical current—potential curves in the vicinity of the mixed potential for the electroless copper deposition (average of six trials) are shown in Figure 8.13. The rate of deposition may be calculated from these curves using the Le Roy equation (29,30) ... [Pg.159]

Although the kinetic variable in electrode reactions in the current density, extensive use of the overpotential concept has been made in the electrochemical literature to indicate the departure from equilibrium [7]. Depending on the particular rate-determining process, in the overall electrode kinetics ohmic, charge transfer, reaction, concentration or mass transport, and crystallization overpotentials are described in the literature. Vetter [7] distinguished the concept of overpotential from that of polarization in the case of mixed potentials when the zero current condition does not correspond to an equilibrium potential as will be discussed in Sect. 8. [Pg.7]

Indeed, the mathematical form of the mixed-potential concept (Bockris, 1954) has been applied to a number of chemical processes which, it has been shown, in fact, consist of two partnered surface electrochemical processes (Spiro, 1984). Thus, energy conversion processes at the surface of mitochondrial cells may involve the electrochemical oxidation of glucose as the anodic reaction and the electrochemical reduction of oxygen as the cathodic (Gutmann, 1985). [Pg.252]

Given sufficient quantitative information about the electrochemical processes occurring, mixed potential theory can be used to predict a corrosion rate. Unfortunately, in the vast majority of cases, there are few data that can be applied with any confidence. In general, experimental measurements must be made that can be interpreted in terms of mixed potential theory. The most common of these measurements in electrochemical corrosion engineering is the polarization curve. [Pg.43]

The information required to predict electrochemical reaction rates (i.e., experimentally determined by Evans diagrams, electrochemical impedance, etc.) depends upon whether the reaction is controlled by the rate of charge transfer or by mass transport. Charge transfer controlled processes are usually not affected by solution velocity or agitation. On the other hand, mass transport controlled processes are strongly influenced by the solution velocity and agitation. The influence of fluid velocity on corrosion rates and/or the rates of electrochemical reactions is complex. To understand these effects requires an understanding of mixed potential theory in combination with hydrodynamic concepts. [Pg.151]

Considerable progress has been made during the past decade toward a better insight into the basic concepts and mechanism involved in metallic dissolution and corrosion. More emphasis has been placed on the "fundamental particles (metallic ions, electrons, and electron acceptors) and on the use of current-voltage characteristics. The wide recognition of dissolution and corrosion as electrode processes, and the idea of a polyelectrode exhibiting a mixed potential, have augmented the use of electrochemical techniques in the study and interpretation of corrosion phenomena. There is even some evidence that the phenomenon of passivity may soon be clarified. [Pg.327]

These equations assume that only the lowest energy state mixes with the ground state, that the potential energy surfaces are harmonic and have the same force constants, and that the displacement of the ground state potential energy surface compensates for the stabilization and destabilization of the states that mix [116]. The use of electrochemical data in the evaluation of parameters that contribute to hvmax leads to a significant correction term in strongly coupled donor-acceptor systems since the excited state species is not involved in the electrochemical processes [9, 116]. The optical and electrochemical processes are related by means of the electron-transfer equilibrium in Eq. 29. [Pg.341]

According to the mixed potential theory, the overall reaction should be interpretable simply by superimposing the respective electrochemical behavior of the two partial reactions, determined independently. More recent studies, however, show that electroless deposition processes are much more complicated than represented by the simple mixed potential theory described above. Interdependence of partial reactions and participation of a third reaction are among the complications which limit the significance of simple combination of independently studied partial reactions. Examples of such complications Eire discussed in the subsequent sections. [Pg.59]

In spite of such limitations associated with the application of the mixed potential concept, results of electrochemical investigation of the partial reactions are highly useful to understand the characteristics of electroless deposition processes. [Pg.59]

Whether a mineral undergoes oxidation or reduction is determined by the rest potential if there is only one pair of redox process occurring on a mineral surface (the rest potential is the potential an electrochemical system will naturally approach if no external voltage is applied). The redox behavior will be determined by the mixed potential if there... [Pg.46]


See other pages where Electrochemical processes mixed potential is mentioned: [Pg.232]    [Pg.232]    [Pg.239]    [Pg.236]    [Pg.241]    [Pg.7]    [Pg.259]    [Pg.229]    [Pg.123]    [Pg.42]    [Pg.18]    [Pg.201]    [Pg.206]    [Pg.123]    [Pg.538]    [Pg.46]    [Pg.337]    [Pg.163]    [Pg.47]    [Pg.251]    [Pg.124]    [Pg.2513]   
See also in sourсe #XX -- [ Pg.529 ]

See also in sourсe #XX -- [ Pg.529 ]

See also in sourсe #XX -- [ Pg.529 ]




SEARCH



Electrochemical potential

Electrochemical processes

Mixed potential

© 2024 chempedia.info