Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conversion processes, energy

Demirbas, A. 1998. Yields of oil products from thermochemical biomass conversion processes. Energy Convers Manage 39 685-690. [Pg.215]

This book is divided into four parts. The first part (Chapters 1-3) provides brief reviews of the fundamental aspects relevant to the conversion from chemical energy to aerothermal energy. References listed in each chapter should prove useful to the reader for better understanding of the physical bases of the energy conversion process energy formation, supersonic flow, shock wave, detonation, and defl agration. The second part (Chapter 4) deals with the energetics of chemical compounds used as propellants and explosives, such as heat of formation, heat of explosion, adiabatic flame temperature, and specific impulse. [Pg.524]

One approach has been to increase the energy efficiency of conventional processing by such techniques as Improved energy conversion processes, energy reclamation and recycle and mechanical techniques to extract a greater portion of the water from wet fabrics prior to their being dried. [Pg.155]

Figure C3.5.2. VER transitions involved in the decay of vibration Q by cubic and quartic anhannonic coupling (from [M])- Transitions involving discrete vibrations are represented by arrows. Transitions involving phonons (continuous energy states) are represented by wiggly arrows. In (a), the transition denoted (i) is the ladder down-conversion process, where D is annihilated and a lower-energy vibration cu and a phonon co are created. Figure C3.5.2. VER transitions involved in the decay of vibration Q by cubic and quartic anhannonic coupling (from [M])- Transitions involving discrete vibrations are represented by arrows. Transitions involving phonons (continuous energy states) are represented by wiggly arrows. In (a), the transition denoted (i) is the ladder down-conversion process, where D is annihilated and a lower-energy vibration cu and a phonon co are created.
Produced from Co l. Estimates of the cost of producing methanol from coal have been made by the U.S. Department of Energy (DOE) (12,17) and they are more uncertain than those using natural gas. Experience in coal-to-methanol faciUties of the type and size that would offer the most competitive product is limited. The projected costs of coal-derived methanol are considerably higher than those of methanol produced from natural gas. The cost of the production faciUty accounts for most of the increase (11). Coal-derived methanol is not expected to compete with gasoline unless oil prices exceed 0.31/L ( 50/bbl). Successful development of lower cost entrained gasification technologies could reduce the cost so as to make coal-derived methanol competitive at oil prices as low as 0.25/L ( 40/bbl) (17) (see Coal conversion processes). [Pg.423]

The need to meet environmental regulations can affect processing costs. Undesirable air emissions may have to be eliminated and Hquid effluents and soHd residues treated and disposed of by incineration or/and landfilling. It is possible for biomass conversion processes that utilize waste feedstocks to combine waste disposal and treatment with energy and/or biofuel production so that credits can be taken for negative feedstock costs and tipping or receiving fees. [Pg.16]

S. S. Sofer and O. R. Zaborsky, eds.. Biomass Conversion Processes for Energy andFuels, Plenum Press, New York, 1981, 420 pp. [Pg.51]

In the industrial arena, the term power generation most typically refers to the production of electrical or mechanical power via any of several energy conversion processes. Early examples of practical power generation devices include water-wheel-powered mills for grinding grain, which were reportedly used as early as 100 BC in the Balkans and areas of the Middle East, and wind-powered mills, which were widely used as early as the tenth century in the Middle East. [Pg.1]

AIterna.tives to y-Ray Emission. y-Ray emission results ia the deexcitation of an excited nuclear state to a lower state ia the same nucHde, ie, no change ia Z or. There are two other processes by which this transition can take place without the emission of a y-ray of this energy. These are internal conversion and internal pair formation. The internal-conversion process iavolves the transfer of the energy to an atomic electron. [Pg.451]

The use of wind as a renewable energy source involves the conversion of power contained in moving air masses to rotating shaft power. These air masses represent the complex circulation of winds near the surface of Earth caused by Earth s rotation and by convective heating from the sun. The actual conversion process utilizes basic aerodynamic forces, ie, lift or drag, to produce a net positive torque on a rotating shaft, resulting in the production of mechanical power, which can then be used directly or converted to electrical power. [Pg.232]

An important by-product of most energy technologies is heat. Few energy conversion processes are carried out without heat being rejected at some point in the process stream. Historically, it has been more convenient as weU as less cosdy to reject waste heat to the environment rather than to attempt significant recovery. The low temperatures of waste heat in relation to process requirements often make reuse impractical and disposal the only attractive alternative (see Process energy conservation). [Pg.472]

Cogeneration is an energy conversion process wherein heat from a fuel is simultaneously converted to useful thermal energy (e.g., process steam) and electric energy. The need for either form can be the primary incentive for cogeneration, but there must be opportunity for economic captive use or sale of the other. In a chemical plant the need for process and other heating steam is hkely to be the primaiy in a pubhc utility plant, electricity is the usual primary produc t. [Pg.2405]

In some instances, however, pai t of the chemical energy bound in relatively high-enthalpy compounds can be converted directly to electricity as these reactants are converted to produc ts of lower enthalpy (galvanic action). A process in the opposite direc tion also is possible for some systems an elec tric current can be absorbed as the increased chemical energy of the higher-enthalpy compounds (electrolytic action). The devices in which electrochemical energy conversion processes occur are called cells. [Pg.2409]

In the interest of energy conversion, process heat can be obtained from a heat recovery unit in which heat is recovered from turbine or reciprocating engine exhaust. In a heat recovery unit, an exhaust gas flows over finned tubes carrying the fluid to be heated. The hot exhaust gas (9()0"F to I.2(K) F) heats the fluid in the tubes in a manner similar to that in which air cools the fluid in an aerial cooler. It is also possible to recover heat from exhausts by routing the exhaust duct directly through a fluid bath. The latter option is relatively inefficient but easy to install and control. [Pg.83]

The availability of large and fast computers, in combination with numerical techniques to compute transient, turbulent flow, has made it possible to simulate the process of turbulent, premixed combustion in a gas explosion in more detail. Hjertager (1982) was the first to develop a code for the computation of transient, compressible, turbulent, reactive flow. Its basic concept can be described as follows A gas explosion is a reactive fluid which expands under the influence of energy addition. Energy is supplied by combustion, which is modeled as a one-step conversion process of reactants into combustion products. The conversion (combustion)... [Pg.109]

The processes of electron transport and oxidative phosphorylation are membrane-associated. Bacteria are the simplest life form, and bacterial cells typically consist of a single cellular compartment surrounded by a plasma membrane and a more rigid cell wall. In such a system, the conversion of energy from NADH and [FADHg] to the energy of ATP via electron transport and oxidative phosphorylation is carried out at (and across) the plasma membrane. In eukaryotic cells, electron transport and oxidative phosphorylation are localized in mitochondria, which are also the sites of TCA cycle activity and (as we shall see in Chapter 24) fatty acid oxidation. Mammalian cells contain from 800 to 2500 mitochondria other types of cells may have as few as one or two or as many as half a million mitochondria. Human erythrocytes, whose purpose is simply to transport oxygen to tissues, contain no mitochondria at all. The typical mitochondrion is about 0.5 0.3 microns in diameter and from 0.5 micron to several microns long its overall shape is sensitive to metabolic conditions in the cell. [Pg.674]

Cogeneration is the production of two useful forms of energy in a single energy conversion process. For example, a gas turbine may produce both rotational energy for an electric generator and heat for a building. [Pg.265]


See other pages where Conversion processes, energy is mentioned: [Pg.2421]    [Pg.88]    [Pg.331]    [Pg.1]    [Pg.5]    [Pg.9]    [Pg.15]    [Pg.35]    [Pg.35]    [Pg.37]    [Pg.39]    [Pg.43]    [Pg.46]    [Pg.39]    [Pg.426]    [Pg.225]    [Pg.469]    [Pg.3]    [Pg.238]    [Pg.259]    [Pg.208]    [Pg.258]    [Pg.529]    [Pg.133]    [Pg.1546]    [Pg.56]    [Pg.113]    [Pg.108]    [Pg.265]    [Pg.470]    [Pg.606]   


SEARCH



Conversion processes

Energy conversation

Energy process

Energy’ conversion

© 2024 chempedia.info