Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrocatalyst study techniques

The SECM capacity for rapid screening of an array of catalyst spots makes it a valuable tool for studies of electrocatalysts. This technique was used to screen the arrays of bimetallic or trimetallic catalyst spots with different compositions on a GC support in search of inexpensive and efficient electrocatalytic materials for polymer electrolyte membrane fuel cells (PEMFC) [126]. Each spot contained some binary or ternary combination of Pd, Au, Ag, and Co deposited on a glassy carbon substrate. The electrocatalytic activity of these materials for the ORR in acidic media (0.5 M H2S04) was examined using SECM in a rapidimaging mode. The SECM tip was scanned in the x—y plane over the substrate surface while electrogenerating 02 from H20 at constant current. By scanning... [Pg.220]

There are many opportunities to be explored in the area of binary, ternary and quaternary anode catalyst formulations for methanol oxidation. Most of the studies to date, with the exception of the work by Gurau et al. on PtRuIrOs [122], explored a rather limited number of catalyst compositions, typically less than five. In order to search and discover the optimum formulation and composition, fast and efficient electrocatalyst screening techniques are required that are able to provide electrochemieal performance evaluations under conditions directly applicable to... [Pg.199]

The above results demonstrate that computational screening is promising technique for use in electrocatalyst searches. The screening procedure can be viewed as a general, systematic, DFT-based method of incorporating both activity and stability criteria into the search for new metal alloy electrocatalysts. By suggesting plausible candidates for further experimental study, the method can, ultimately, result in faster and less expensive discovery of new catalysts for electrochemical processes. [Pg.87]

In view of the complexity of heterogeneous systems, none of the above techniques will be able to supply, by itself, a complete atomic-level description of surface phenomena. A multi-technique approach has been perceived by many as most appropriate for fundamental studies in electrochemical surface science (30-2). Since none of the existing electrochemical laboratories are adequately equipped to perform a comprehensive experimental study, collaborative efforts between research groups of different expertise are burgeoning. Easier access to national or central facilities are also being contemplated for experiments which cannot be performed elsewhere. The judicious combination of the available methods in conjunction with the appropriate electrochemical measurements are permitting studies of electrocatalyst surface phenomena unparalleled in molecular detail. [Pg.4]

Because of the slow reaction kinetics in comparison to hydrogen oxidation, this reaction has been studied with an array of techniques both in UHV and electrochemical environments to understand the surface reaction and develop more efficient electrocatalysts. The extensive studies have highlighted the disconnect between the... [Pg.325]

As indicated above, the Ap technique has been applied to several other phenomena involving Pt-based electrocatalysts. The first report of Ap applied to operating Pt electrocatalysts was based on Hads at anodic potentials. The nature of Ha on Pt, and its contribution to the effective double layer, had long been a matter of debate. " Ap analysis of Pt Lmn XANES showed the H to be highly delocalized, and hopping between one-fold and three-fold (fee) sites on the Pt surface. While prior research had pointed to such activity, the realistic extent in respect to potential was murky due to the nature of the analytical techniques (e.g., IR spectroscopy, UHV studies, etc.) employed. The study by Teliska et al., ... [Pg.547]

Part IV describes recent breakthroughs in the use of advanced experimental techniques for the in situ study of nanoparticle catalysts and electrocatalysts, including X-ray absorption spectroscopy, NMR, and STM. [Pg.7]

In this chapter we review studies, primarily from our laboratory, of Pt and Pt-bimetallic nanoparticle electrocatalysts for the oxygen reduction reaction (ORR) and the electrochemical oxidation of H2 (HOR) and H2/CO mixtures in aqueous electrolytes at 274—333 K. We focus on the study of both the structure sensitivity of the reactions as gleaned from studies of the bulk (bi) metallic surfaces and the resultant crystallite size effect expected or observed when the catalyst is of nanoscale dimension. Physical characterization of the nanoparticles by high-resolution transmission electron microscopy (HRTEM) techniques is shown to be an essential tool for these studies. Comparison with well-characterized model surfaces have revealed only a few nanoparticle anomalies, although the number of bimetallics... [Pg.334]

This section describes various strategies for the immobilization of macrocycles on electrode surfaces and their characterization by both electrochemical and in situ spectroscopic techniques in solutions devoid of dioxygen. It also provides theoretical foundations involved in the analysis of the mechanisms of oxygen reduction at such interfaces based on measurements performed under forced convection. Studies involving a number of carefully selected phthalocyanines, and porphyrins, will be presented and discussed, which in our view best illustrate the nuances of the rich behavior this class of adsorbed electrocatalysts can exhibit. These examples serve to... [Pg.219]

From the above discussion it becomes apparent that some conflicting experimental evidence exists on hydrocarbon adsorption and on surface intermediates. This arises primarily from the use of electrocatalysts of varying histories and pretreatments. It should be stressed that many adsorption studies were performed on anodically pretreated platinum. The removal of surfaces oxides from such electrodes may have not been always accomplished when the surface was cathodically reduced in some experiments, as outlined in Section IV,D. Obviously, different surface species could exist on bare or on oxygen-covered electrocatalysts. Characterization of surface structure and activity and of adsorbed species using modern spectroscopic techniques would provide useful information for fuel cell and selective electrocatalytic oxidations and reductions. [Pg.261]

Understanding the activity and selectivity properties of electrocatalysts requires the characterization of catalyst surfaces, determination of adsorption characteristics, identification of surface intermediates and of all reaction products and paths, and mechanistic deliberation for complex as well as model reactions. Electrochemical and classical methods for adsorption studies are well documented in the literature (5, 7-9, 25, 24, 373. Here, we shall outline briefly some prominent electrochemical methods and some nonelectrochemical techniques that can provide new insight into electrocatalysis. Electrode kinetic parameters can be determined by potentionstatic methods using the methodology of Section II1,D,3. [Pg.299]

For surface structure studies, perhaps the most popular technique has been LEED (373). Elastically diffracted electrons from a monoenergetic beam directed to a single-crystal surface reveal structural properties of the surface that may differ from those of the bulk. Some applications of LEED to electrocatalyst characterization were cited in Section IV (106,148,386). Other, less specific, but valuable surface examination techniques, such as scanning electron microscopy (SEM) and X-ray microprobe analysis, have not been used in electrocatalytic studies. They could provide information on surface changes caused by reaction, some of which may lead to catalyst deactivation (256,257). Since these techniques use an electron beam, they can be coupled with previously discussed methods (e.g. AES or XPS) to obtain a qualitative mapping of the structure and composition of a catalytic surface. [Pg.308]

The opponents of fundamental studies with idealized electrocatalysts and reactions cannot deny the unique insight into surface molecular and electronic or energetic interactions that new surface and mechanistic techniques generate. A combination of surface spectrometries, isotopic reactions, and conventional electrode kinetics could help unravel some of the surface mysteries. The application of such methods in electrocatalysis is limited at present to hydrogen and oxygen reactants on simple catalytic surfaces. Extension to a variety of model and complex reactions should be attempted soon. The prospective explorer, however, should strive and attend with care the standardization of analytical methods for meaningful interpretations and comparisons. [Pg.322]

Although the first reports of this approach involved studies with metal alloys [3] and minerals [4], within a few years the technique has been extended to a wide variety of research areas. As these findings have been summarized in several reviews [5-8] and also in a monograph [9], attention will be focused here on more recent developments, notably on the mechanical immobilization of particles on electrodes. Today, a huge amount of information is available for electrochemical systems comprising particles enclosed in polymer films or other matrices (see Refs [10-16]). Originally, the main aim of such particle enclosure was to achieve specific electrode properties (e.g., functionalized carbon/polymer materials as electrocatalysts [17, 18] solid-state, dye-sensitized solar cells [19]), rather than to study the electrochemistry of the particles. This situation arose mainly because the preparation of these composites was too cumbersome for assessing the particles properties. The techniques also suffered from interference caused by the other phases that constituted the electrode. [Pg.180]

In the case of alloy electrocatalysts, the identification of the alloy constituent (at the topmost layers) during the electrocatalytic reaction is rather difficult. Therefore, the assumption of stability after the reaction makes the study rather simpler. In this case, the UHV conditions can be applied only in the ex situ variation, and then an idea of the process mechanism is also required. Not many techniques can be used for the identification of the alloy constituents. However, techniques under a high vacuum condition are applied x-ray photoelectron spectroscopy (XPS), Auger spectroscopy, low-energy ion scattering, and low-energy electron diffraction. [Pg.228]

PtSn/C electrocatalysts with R Sn atomic ratios of 50 50 and 90 10 were prepared by alcohol-reduction process, using ethylene glycol as solvent and reducing agent, and by borohydride reduction. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electro-oxidation of ethanol was studied by cyclic voltammetry using the thin porous coating technique. The electrocatalysts performance depends greatly on preparation procedures and R Sn atomic ratios. [Pg.617]

Electrochemical studies of the electrocatalysts were carried out using the thin porous coating technique [12,13]. An amormt of 20 mg of the eletrocatalyst was added to a solution of 50 mL of water containing 3 drops of a 6% polytetrafluoroethylene (PTFE) suspension. The resulting mixture was treated in an ultrasound bath for 10 min, filtered and transferred to the cavity (0.30 mm deep and 0.36 cm area) of the working electrode. The quantity of electrocatalyst in the working electrode was determined with a precision of... [Pg.618]

One of the problems in electrocatalysis is that electrochemical reactions are generally carried out in aqueous or nonaqueous solution. Thus, the solvent may intervene in the over-all reaction. In addition, it is necessary to carry out the reaction under highly purified conditions. Otherwise, impurities in the solution may affect the kinetics of the reaction concerned, so that mechanism studies become difficult. For gas phase reactions, though impurity concentrations are generally lower than in electrochemical reactions, one uses high-vacuum techniques for purification. Electrochemical purification techniques— pre-electrolysis or adsorption of impurities near the potential of maximum adsorption—are often simpler. The activation of a poissoned catalyst is often difficult or impossible. An electrocatalyst can often be reactivated in situ, by pulse techniques (cf. Section VII,D). [Pg.393]

Fig. 1.35 Oxygen reduction half-cell studies Evaluation of electrocatalyst preparation. Comparison of sputtering techniques (a) sputtered R (30 mTorr Ar pressure ), and (b) sputtered R (30 mTorr Ar pressure),with that of ETEK electrode (0.5 mg/cm R loading) in 1.0 M sulfuric acid under 10 psig oxygen pressure (2.0 L min. oxygen flow rate) at 25 C. Fig. 1.35 Oxygen reduction half-cell studies Evaluation of electrocatalyst preparation. Comparison of sputtering techniques (a) sputtered R (30 mTorr Ar pressure ), and (b) sputtered R (30 mTorr Ar pressure),with that of ETEK electrode (0.5 mg/cm R loading) in 1.0 M sulfuric acid under 10 psig oxygen pressure (2.0 L min. oxygen flow rate) at 25 C.
The CT by oxidation of phthalocyanine zinc(II) (Zn Pc) in a Nafion film was also studied using a potential-step chronocoulospectrometry (PSCCS) technique [34]. Absorption spectra of Zn Pc/Nafion indicated the formation of the Zn Pc dimer, and the equilibrium constant between its monomer and dimer in the Nafion film was 75 M . The plots of bulk CT rate vs. total Zn Pc concentration gave a downwardly deviating curve, and the process was analyzed considering the equilibrium between the monomer and the dimer. The analysis result showed that CT takes place by physical displacement of the Zn Pc monomer with kp = 3.3 x 10 s and not by charge hopping, and that the contribution of the dimer to the CT is neghgible. The macrocyclic complexes such as [Co TTP]" " and Zn Pc are known to be an active electrocatalyst. The obtained CTs by [Co TPP] and Zn Pc should be taken into... [Pg.153]

In order to get answers to these questions, the ability to better characterize catalysts and electrocatalysts in situ under actual reactor or cell operating conditions (i.e., operando conditions) with element specificity and surface sensitivity is crucial. However, there are very few techniques that lend themselves to the rigorous requirements in electrochemical and in particular fuel cell studies (Fig. 1). With respect to structure, in-situ X-ray diffraction (XRD) could be the method of choice, but it has severe limitations for very small particles. Fourier transform infra red (FTTR), " and optical sum frequency generation (SFG) directly reveal the adsorption sites of such probe molecules as CO," but cannot provide much information on the adsorption of 0 and OH. To follow both structure and adsorbates at once (i.e., with extended X-ray absorption fine stmcture (EXAFS) and X-ray absorption near edge stmc-ture (XANES), respectively), only X-ray absorption spectroscopy (XAS) has proven to be an appropriate technique. This statement is supported by the comparatively large number of in situ XAS studies that have been published during the last decade. 16,17,18,19,20,21,22,23,24,25 highly Versatile, since in situ measme-... [Pg.161]


See other pages where Electrocatalyst study techniques is mentioned: [Pg.310]    [Pg.335]    [Pg.274]    [Pg.114]    [Pg.288]    [Pg.551]    [Pg.339]    [Pg.343]    [Pg.100]    [Pg.420]    [Pg.447]    [Pg.487]    [Pg.93]    [Pg.305]    [Pg.571]    [Pg.523]    [Pg.535]    [Pg.572]    [Pg.218]    [Pg.239]    [Pg.1010]    [Pg.502]    [Pg.67]    [Pg.192]    [Pg.145]    [Pg.578]    [Pg.561]    [Pg.69]    [Pg.232]   
See also in sourсe #XX -- [ Pg.299 , Pg.300 , Pg.301 , Pg.302 , Pg.303 , Pg.304 , Pg.305 , Pg.306 , Pg.307 , Pg.308 ]




SEARCH



Electrocatalyst

Electrocatalysts

Study techniques

© 2024 chempedia.info