Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrocatalysts efficiency

Fuel-cell Temperature rangej°C Electrocatalyst Efficiency % HHV Start-up timejh... [Pg.189]

One factor contributing to the inefficiency of a fuel ceU is poor performance of the positive electrode. This accounts for overpotentials of 300—400 mV in low temperature fuel ceUs. An electrocatalyst that is capable of oxygen reduction at lower overpotentials would benefit the overall efficiency of the fuel ceU. Despite extensive efforts expended on electrocatalysis studies of oxygen reduction in fuel ceU electrolytes, platinum-based metals are stiU the best electrocatalysts for low temperature fuel ceUs. [Pg.586]

Although several metals, such as Pt and Ag, can also act as electrocatalysts for reaction (3.7) the most efficient electrocatalysts known so far are perovskites such as Lai-xSrxMn03. These materials are mixed conductors, i.e., they exhibit both anionic (O2 ) and electronic conductivity. This, in principle, can extend the electrocatalytically active zone to include not only the three-phase-boundaries but also the entire gas-exposed electrode surface. [Pg.96]

Despite their high cost, they are used in industrial electrolyses, fuel cells, and many electrochemical devices. The large investments associated with platinum electrocatalysts usually are paid back by appreciably higher efficiencies. [Pg.525]

Similarly, Pd, Ag, and Pd-Ag nanoclusters on alumina have been prepared by the polyol method [230]. Dend-rimer encapsulated metal nanoclusters can be obtained by the thermal degradation of the organic dendrimers [368]. If salts of different metals are reduced one after the other in the presence of a support, core-shell type metallic particles are produced. In this case the presence of the support is vital for the success of the preparation. For example, the stepwise reduction of Cu and Pt salts in the presence of a conductive carbon support (Vulcan XC 72) generates copper nanoparticles (6-8 nm) that are coated with smaller particles of Pt (1-2 nm). This system has been found to be a powerful electrocatalyst which exhibits improved CO tolerance combined with high electrocatalytic efficiency. For details see Section 3.7 [53,369]. [Pg.36]

A number of metal porphyrins have been examined as electrocatalysts for H20 reduction to H2. Cobalt complexes of water soluble masri-tetrakis(7V-methylpyridinium-4-yl)porphyrin chloride, meso-tetrakis(4-pyridyl)porphyrin, and mam-tetrakis(A,A,A-trimethylamlinium-4-yl)porphyrin chloride have been shown to catalyze H2 production via controlled potential electrolysis at relatively low overpotential (—0.95 V vs. SCE at Hg pool in 0.1 M in fluoroacetic acid), with nearly 100% current efficiency.12 Since the electrode kinetics appeared to be dominated by porphyrin adsorption at the electrode surface, H2-evolution catalysts have been examined at Co-porphyrin films on electrode surfaces.13,14 These catalytic systems appeared to be limited by slow electron transfer or poor stability.13 However, CoTPP incorporated into a Nafion membrane coated on a Pt electrode shows high activity for H2 production, and the catalysis takes place at the theoretical potential of H+/H2.14... [Pg.474]

Several other polypyridyl metal complexes have been proposed as electrocatalysts for C02 reduction.100-108 For some of them HCOO- appears as the dominant product of reduction. It has been shown for instance that the complexes [Rhin(bpy)2Cl2]+ or [Rh n(bpy)2(CF3S03)2]+ catalyze the formation of HCOO- in MeCN (at —1.55 V vs. SCE) with a current efficiency of up to 80%.100,103 The electrocatalytic process occurs via the initially electrogenerated species [RhI(bpy)2]+, formed by two-electron reduction of the metal center, which is then reduced twice more (Rlr/Rn Rh°/Rh q. The source of protons is apparently the supporting electrolyte cation, Bu4N+ via the Hoffmann degradation (Equation (34)). [Pg.481]

Finally, it has been reported that carbon electrodes modified with thin polymeric films of polypyridyl metal complexes containing a dispersion of metal particles (Rh° or Pd°) can be used as electrocatalyst for reduction of C02 to hydrocarbons in MeCN. Apparently CH4 is the dominant reduction product (up to 18% of faradaic efficiency).123,124 It should be noted that the product distribution is reminiscent of a Fischer-Tropsch process since C2, C3, and C4 hydrocarbons are also formed. [Pg.482]

Studies on the electrocatalytic activity of metal porphyrins are limited in comparison with those on other classes of macrocyclic metal complex. Among the few porphyrin complexes tested, cobalt porphyrins have been demonstrated to be efficient electrocatalysts for the reduction of C02 to CO... [Pg.482]

Ni(cyclam)]2+ was shown to be an efficient electrocatalyst for the intramolecular cyclization-carboxylation of allyl or propargyl-2-haloaryl ethers,200 and for the synthesis of cyclic carbonates from epoxides and carbon dioxide.201... [Pg.485]

Low-valent nickel complexes of bpy are also efficient electrocatalysts in the reductive coupling reaction of aromatic halides.207 Detailed investigations are in agreement with a reaction mechanism involving the oxidative addition (Equation (40)) of the organic halide to a zero valent complex.208-210 Starting from [Nin(bpy)2(X)2]0 with excess bpy, or from [Nin(bpy)3]2 +, results in the [Ni°(bpy)2]° complex (Equations (37) and (38)). However, the reactive complex is the... [Pg.485]

It has been recently demonstrated that the simplest of the cobalt porphyrins (Co porphine) adsorbed on a pyrolytic graphite electrode is also an efficient electrocatalyst for reduction of 02 into 1120.376 The catalytic activity was attributed to the spontaneous aggregation of the complex on the electrode surface to produce a structure in which the cobalt-cobalt separation is small enough to bridge and activate 02 molecules. The stability of the catalyst is quite poor and largely improved by using porphyrin rings with mew-substitu-tion.377-380 Flowever, as the size of the mew-substituents increases the four-electron reduction efficiency decreases. [Pg.494]

A similar catalytic activity with a monomeric porphyrin of iridium has been observed when adsorbed on a graphite electrode.381-383 It is believed that the active catalyst on the surface is a dimeric species formed by electrochemical oxidation at the beginning of the cathodic scan, since cofacial bisporphyrins of iridium are known to be efficient electrocatalysts for the tetraelectronic reduction of 02. In addition, some polymeric porphyrin coatings on electrode surfaces have been also reported to be active electroactive catalysts for H20 production, especially with adequately thick films or with a polypyrrole matrix.384-387... [Pg.494]

Several strategies to immobilize the p-oxo catalysts on an electrode surface or in a membrane have been employed. However, no available data about their efficiency as modified electrodes for water oxidation have been given.482-486 It should be noted that [ (bpy)2RuIII(OH2) 2(M C))]4+ is also an excellent electrocatalyst for oxidation of chloride to chlorine (better than for the oxidation of H20 into 02) at 1.20 V vs. SCE in 0.05 M HC1 solution,487 or at a modified electrode prepared by incorporation of the complex by ion-exchange into polystyrene sulfonate or Nafion films.482,4 8... [Pg.498]

Very recently a new kind of electrocatalyst has been propounded using the dinuclear quinone-containing complex of ruthenium (25).492,493 Controlled-potential electrolysis of the complex at 1.70 V vs. Ag AgCl in H20 + CF3CH2OH evolves dioxygen with a current efficiency of 91% (21 turnovers). The turnover number of 02 evolution increases up to 33,500 when the electrolysis is carried out in water (pH 4.0) with an indium-tin oxide(ITO) electrode to which the complex is bound. It has been suggested that the four-electron oxidation of water is achieved by redox reactions of not only the two Run/Ruin couples, but also the two semiquinone/quinone couples of the molecule. [Pg.498]

Because of the slow reaction kinetics in comparison to hydrogen oxidation, this reaction has been studied with an array of techniques both in UHV and electrochemical environments to understand the surface reaction and develop more efficient electrocatalysts. The extensive studies have highlighted the disconnect between the... [Pg.325]

Semiconductor - Metal Junctions Besides the semiconductor-liquid interface, electron-hole separation can be attained also when the couple is generated in the space charge layer of a homo/heterojunction or semiconductor-metal junction. The metal can also act as electrocatalyst (e.g., for reduction of 02, H+ or C02). The development of the proper structure, including arrays of multiple junctions in series to enhance photovoltages and efficiently harvest radiation [53] and/ or the inclusion of suitable electrocatalysts, is crucial. [Pg.363]

Fang, B., et al., High Pt loading on functionalized multiwall carbon nanotubes as a highly efficient cathode electrocatalyst for proton exchange membrane fuel cells. Journal of Materials Chemistry, 2011. 21(22) p. 8066-8073. [Pg.159]

Section IV emphasizes on nanoparticle catalysts for fuel cell applications. Fuel cell is a clean and desired future energy source. It is interesting to see that nanoparticle electrocatalysts play an important role in fuel cell development. Chapters 14 and 15 explore how nanoparticle catalysts can efficiently catalyze the reactions at anode and cathode of the fuel cells. [Pg.342]


See other pages where Electrocatalysts efficiency is mentioned: [Pg.454]    [Pg.241]    [Pg.527]    [Pg.265]    [Pg.274]    [Pg.313]    [Pg.321]    [Pg.55]    [Pg.59]    [Pg.61]    [Pg.66]    [Pg.93]    [Pg.101]    [Pg.406]    [Pg.439]    [Pg.328]    [Pg.336]    [Pg.366]    [Pg.439]    [Pg.548]    [Pg.684]    [Pg.483]    [Pg.487]    [Pg.495]    [Pg.497]    [Pg.17]    [Pg.83]    [Pg.200]    [Pg.355]    [Pg.372]    [Pg.186]    [Pg.374]   
See also in sourсe #XX -- [ Pg.512 ]




SEARCH



Electrocatalyst

Electrocatalysts

© 2024 chempedia.info