Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrical resistance and conductivity

The units of conductivity are ohm metre m ), or siemens per metre (S m ), where the siemen is equivalent to ohm .  [Pg.554]

The electric field in a material produced by the application of a voltage, V, across it is given by  [Pg.554]

Electrical conductivity is due to moving charges in a solid. For most materials, these are electrons. They move with a wide range of velocities but the average number of electrons moving in one direction is equal to the number moving in the opposite direction in the absence of an electric field. The imposition of an electric field causes the velocity distribution to shift so that overall the electrons drift in one direction. This drift constitutes an electric current. [Pg.554]

The magnitude of the current is defined as the amount of charge that passes through unit cross-sectional area of the conductor per second. That is  [Pg.554]


Figure 4.2 Change of Electrical Resistance and Conductivity of Molybdenite with Temperature (Ref.77)... Figure 4.2 Change of Electrical Resistance and Conductivity of Molybdenite with Temperature (Ref.77)...
Fuj] SEM, optical microscopy, TEM, electrical properties tests, Vickers hardness measurements Electrical resistivity and conductivity, hardness... [Pg.560]

TABLE 11.8 The electrical resistivities and conductivities of a variety of different materials at 20 °C. [Pg.377]

During the selection of the proper materials to be used for protection, several characteristics of each material would be rated to help narrow the decision. The minimum characteristics that should be evaluated for these materials are ability to withstand environmental and plant produced radiation, coefficient of thermal expansion, density, electrical resistivity and conductance to control electrostatic discharge, material chemistry ar d composition, operational temperature range, resilience, specific heat, strength, stiffness, thermal conductivity, thermal radiation absorptivity, thermal radiation emissivity, the ability to fasten the material to the support structure and/or the components themselves, and the compatibility between the protecting material and material to which it would be fastened... [Pg.544]

It is a white crystalline, brittle metal with a pinkish tinge. It occurs native. Bismuth is the most diamagnetic of all metals, and the thermal conductivity is lower than any metal, except mercury. It has a high electrical resistance, and has the highest Hall effect of any metal (i.e., greatest increase in electrical resistance when placed in a magnetic field). [Pg.146]

The electronic configuration for an element s ground state (Table 4.1) is a shorthand representation giving the number of electrons (superscript) found in each of the allowed sublevels (s, p, d, f) above a noble gas core (indicated by brackets). In addition, values for the thermal conductivity, the electrical resistance, and the coefficient of linear thermal expansion are included. [Pg.276]

Electrical Properties. Nylon has low electrical conductivity (high electrical resistivity) and behaves like an insulator. Nylon-6 has a resistivity of 6 X lO " Hem when dry and a resistivity of 2 x lO " Hem when conditioned at 100% rh at 20°C (44) nylon-6,6 responds similarly. [Pg.249]

Beryllia and Thoria. These are specialty oxides for highly specialized appHcations that require electrical resistance and high thermal conductivity. BeryUia is highly toxic and must be used with care. Both are very expensive and are used only in small quantities. [Pg.26]

The resistivity and conductivity of standard annealed copper and a few recommended aluminium grades being used widely for electrical applications are given in Table 30.1. Their corresponding current-carrying capacities in percent, with respect to a standard reference (say, 100% lACS) are also provided in the table. [Pg.916]

It is a valve metal and when made anodic in a chloride-containing solution it forms an anodic oxide film of TiOj (rutile form), that thickens with an increase in voltage up to 8-12 V, when localised film breakdown occurs with subsequent pitting. The TiOj film has a high electrical resistivity, and this coupled with the fact that breakdown can occur at the e.m.f. s produced by the transformer rectifiers used in cathodic protection makes it unsuitable for use as an anode material. Nevertheless, it forms a most valuable substrate for platinum, which may be applied to titanium in the form of a thin coating. The composite anode is characterised by the fact that the titanium exposed at discontinuities is protected by the anodically formed dielectric Ti02 film. Platinised titanium therefore provides an economical method of utilising the inertness and electronic conductivity of platinum on a relatively inexpensive, yet inert substrate. [Pg.165]

The compact structure of diamond accounts for its outstanding properties. It is the hardest of all materials with the highest thermal conductivity. It is the most perfectly transparent material and has one of the highest electrical resistivities and, when suitably doped, is an outstanding semiconductor material. The properties of CVD and single-crystal diamonds are summarized in Table 7 2.[1][18]-[20]... [Pg.194]

This new design is sought to overcome the limits of conventional porous fixed-bed reactors using an electrode phase flowing through the pores [65]. The latter systems suffer from the low conductivity of the electrolyte phase. This generates electrical resistance and leads to accumulation of the electrical current in certain reactor zones and hence results in a spatially inhomogeneous reaction. This means poor exploitation of the catalyst and possible reductions in selectivity. [Pg.410]

Calvet and Guillaud (S3) noted in 1965 that in order to increase the sensitivity of a heat-flow microcalorimeter, thermoelectric elements with a high factor of merit must be used. (The factor of merit / is defined by the relation / = e2/pc, where e is the thermoelectric power of the element, p its electrical resistivity, and c its thermal conductivity.) They remarked that the factor of merit of thermoelements constructed with semiconductors (doped bismuth tellurides usually) is approximately 19 times greater than the factor of merit of chromel-to-constantan thermocouples. They described a Calvet-type microcalorimeter in which 195 semiconducting thermoelements were used instead of the usual thermoelectric pile. [Pg.201]

Besides the glass seal interfaces, interactions have also been reported at the interfaces of the metallic interconnect with electrical contact layers, which are inserted between the cathode and the interconnect to minimize interfacial electrical resistance and facilitate stack assembly. For example, perovskites that are typically used for cathodes and considered as potential contact materials have been reported to react with interconnect alloys. Reaction between manganites- and chromia-forming alloys lead to formation of a manganese-containing spinel interlayer that appears to help minimize the contact ASR [219,220], Sr in the perovskite conductive oxides can react with the chromia scale on alloys to form SrCr04 [219,221],... [Pg.198]

The conductance of a solution is the inverse of its resistance, and conductance has units of ohms 1 or mohs. The higher the conductance of a solution, the lower is its electrical resistance. A conductivity meter and conductivity cell are used to determine the effective resistance of a solution. The conductivity cell consists of a pair of platinized platinum electrodes with an area of approximately 1.0 cm2 with spacers designed to hold the electrodes rigidly parallel and at a fixed distance from each other. The cell can be standardized with solutions of known conductivity to obtain the cell constant, k so that the instrument response R... [Pg.68]

A well-known fact of fundamental solution science is that the presence of ions in any solution gives the solution a low electrical resistance and the ability to conduct an electrical current. The absence of ions means that the solution would not be conductive. Thus, solutions of ionic compounds and acids, especially strong acids, have a low electrical resistance and are conductive. This means that if a pair of conductive surfaces are immersed into the solution and connected to an electrical power source, such as a simple battery, a current can be detected flowing in the circuit. Alternatively, if the resistance of the solution between the electrodes were measured (with an ohmmeter), it would be low. Conductivity cells based on this simple design are in common use in nonchromatography applications to determine the quality of deionized water, for example. Deionized water should have no ions dissolved in it and thus should have a very low conductivity. The conductivity detector is based on this simple apparatus. [Pg.382]

Building a heat flow microcalorimeter is not trivial. Fortunately, a variety of modern commercial instruments are available. Some of these differ significantly from those just described, but the basic principles prevail. The main difference concerns the thermopiles, which are now semiconducting thermocouple plates instead of a series of wire thermocouples. This important modification was introduced by Wadso in 1968 [161], The thermocouple plates have a high thermal conductivity and a low electrical resistance and are sensitive to temperature differences of about 10-6 K. Their high thermal conductivity ensures that the heat transfer occurs fast enough to avoid the need for the Peltier or Joule effects. [Pg.141]

In many cases, it will be impossible to prevent unwanted reactions at the counter electrode. Then a separation of the anolyte and catholyte is needed. An optimal compromise has to be found for the separator between separation effectiveness and ion conductivity, that is, minimized electrical resistance and low energy consumption. Moreover, chemical, thermal, and mechanical stability and price of the separator have to be considered. Naturally, a complete separation is impossible, because a slight diffusion rate is inevitable. In laboratory scale experiments, probably a high cell voltage is acceptable in order to realize a maximal separation. [Pg.37]

Electrical Resistance and Percent Llgnt Transmittance. Low frequency electrical resistance measurements were made on a conductivity bridge (Model RC-18, Industrial Instrument, Cedar Grove, N.J.) at a line frequency of 1 KC. Beckman conductivity cell with cell constant 1.0 cm was used. The percent transmission was also monitored for each of the mixtures at 490 nm (Spectronlc 20, Bausch Lomb Co., Rochester, N.Y.). [Pg.131]

One final note is appropriate for this section. Dne to the fact that many oxide ceramics are used as insulating materials, the term thermal resistivity is often used instead of thermal conductivity. As will be the case with electrical properties in Chapter 6, resistivity and conductivity are merely inverses of one another, and the appropriateness of one or the other is determined by the context in which it is used. Similarly, thermal conductance is often used to describe the thermal conductivity of materials with standard thicknesses (e.g., building materials). Thermal condnctance is the thermal conductivity divided by the thickness (C = k/L), and thermal resistance is the inverse of the prodnct of thermal conductance and area R = 1/C A). [Pg.328]

BS 2050, 1978. Electrical resistance of conductive and antistatic products made from flexible polymeric material. [Pg.273]

G. Janeceks observed that spontaneously inflammable phosphine is evolved during the electrolysis of solutions of the metaphosphates. S. Arrhenius, in his thesis Recherches sur le conductibUite galvanique des electrolytes (Stockholm, 1884), gave measurements of the electrical resistance, and the electrical conductivity of the acid. E. B. R. Prideaux found the meta-acid has a greater conductivity than... [Pg.978]


See other pages where Electrical resistance and conductivity is mentioned: [Pg.553]    [Pg.553]    [Pg.138]    [Pg.503]    [Pg.547]    [Pg.363]    [Pg.45]    [Pg.321]    [Pg.13]    [Pg.85]    [Pg.199]    [Pg.226]    [Pg.797]    [Pg.392]    [Pg.315]    [Pg.7]    [Pg.61]    [Pg.153]    [Pg.508]    [Pg.503]    [Pg.547]    [Pg.138]    [Pg.1576]    [Pg.237]    [Pg.289]   


SEARCH



Conduction resistance

Conductivity resistivity)

Electric resistance

Electric resistivity

Electrical Conductance, Current, and Resistance

Electrical conductivity and

Electrical conductivity and resistivity

Electrical conductivity and resistivity

Electrical resistance/resistivity

Electrical resistivity

Electricity resistance

Resistivity and Conductivity

© 2024 chempedia.info