Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrical emulsions

In contrast to the mentioned usual methods, the electrical emulsion breaking works at room temperature, has no moving parts, low energy input (only low condensator current between the electrodes because of low conductivity organic bulk phase), and it is possible to separate small droplets from the continuous phase. [Pg.382]

The scientific investigation will lead to expanding the practical application of electrical emulsion breaking in chemical engineering, chemistry, biology, etc. [Pg.397]

Although it is hard to draw a sharp distinction, emulsions and foams are somewhat different from systems normally referred to as colloidal. Thus, whereas ordinary cream is an oil-in-water emulsion, the very fine aqueous suspension of oil droplets that results from the condensation of oily steam is essentially colloidal and is called an oil hydrosol. In this case the oil occupies only a small fraction of the volume of the system, and the particles of oil are small enough that their natural sedimentation rate is so slow that even small thermal convection currents suffice to keep them suspended for a cream, on the other hand, as also is the case for foams, the inner phase constitutes a sizable fraction of the total volume, and the system consists of a network of interfaces that are prevented from collapsing or coalescing by virtue of adsorbed films or electrical repulsions. [Pg.500]

Tetrafluoroethylene. Emulsion polymerisation of tetrafluoroethylene, catalysed by oxygen, yields polytetrafluoroethylene (Tejlon) as a very tough horn-hke material of high melting point. It possesses excellent electrical insulation properties and a remarkable inertness towards all chemical reagents, including aqua regia. [Pg.1015]

Electroultrafiltration (EUF) combines forced-flow electrophoresis (see Electroseparations,electrophoresis) with ultrafiltration to control or eliminate the gel-polarization layer (45—47). Suspended colloidal particles have electrophoretic mobilities measured by a zeta potential (see Colloids Elotation). Most naturally occurring suspensoids (eg, clay, PVC latex, and biological systems), emulsions, and protein solutes are negatively charged. Placing an electric field across an ultrafiltration membrane faciUtates transport of retained species away from the membrane surface. Thus, the retention of partially rejected solutes can be dramatically improved (see Electrodialysis). [Pg.299]

Electroultrafiltration has been demonstrated on clay suspensions, electrophoretic paints, protein solutions, oil—water emulsions, and a variety of other materials. Flux improvement is proportional to the appHed electric field E up to some field strength E where particle movement away from the membrane is equal to the Hquid flow toward the membrane. There is no gel-polarization layer and (in theory) flux equals the theoretical permeate flux. It... [Pg.299]

Two kinds of barriers are important for two-phase emulsions the electric double layer and steric repulsion from adsorbed polymers. An ionic surfactant adsorbed at the interface of an oil droplet in water orients the polar group toward the water. The counterions of the surfactant form a diffuse cloud reaching out into the continuous phase, the electric double layer. When the counterions start overlapping at the approach of two droplets, a repulsion force is experienced. The repulsion from the electric double layer is famous because it played a decisive role in the theory for colloidal stabiUty that is called DLVO, after its originators Derjaguin, Landau, Vervey, and Overbeek (14,15). The theory provided substantial progress in the understanding of colloidal stabihty, and its treatment dominated the colloid science Hterature for several decades. [Pg.199]

The theory has certain practical limitations. It is useful for o/w (od-in-water) emulsions but for w/o (water-in-oil) systems DLVO theory must be appHed with extreme caution (16). The essential use of the DLVO theory for emulsion technology Hes in its abdity to relate the stabdity of an o/w emulsion to the salt content of the continuous phase. In brief, the theory says that electric double-layer repulsion will stabdize an emulsion, when the electrolyte concentration in the continuous phase is less than a certain value. [Pg.199]

This energy maximum is calculated from the electric surface potential. An approximation of this surface potential is the zeta potential, which is experimentally deterrnined with commercial instmments. For o/w emulsions with low electrolyte content in the aqueous phase, a zeta potential of 40 mV is sufficient to bring the energy maximum to this level. [Pg.199]

The relative value of the two potentials reveals the destabdization action of salts added to the emulsion. Addition of an electrolyte to the continuous phase causes a reduction of the electric double-layer repulsion potential, whereas the van der Waals potential remains essentially unchanged. Hence, the reduced electric double-layer potential causes a corresponding reduction of the maximum in the total potential, and at a certain concentration of electrolyte the maximum barrier height is reduced to a level at which the stabdity is lost. [Pg.199]

As a related matter it is easily understood that addition of salts at a certain concentration destabilizes an emulsion. It may be concluded that if an emulsion remains stable at electrolyte contents higher than those cited in the preceding paragraphs, the stabiUty is not the result of electric double-layer repulsion, which may be useful information to find the optimum manner for destabilization. [Pg.200]

These include the use of coalescers, separating membranes, and electrical devices and the addition of emulsion-breakiug reagents. These last are used for treating permanent enmlsions and whl not be discussed here. [Pg.1471]

Mattauch-Herzog geometry, which simultaneously focuses all resolved masses onto one plane, allowing the integrating properties of an ion-sensitive emulsion to be used as the detector. Although electrical detection with an electron multiplier can be applied, the ion-sensitive emulsion-coated glass photographic plate is the most common method of detection and will be described in this article. [Pg.600]

The final polymerised product is formed in particles much smaller (50-500 nm) than produced with suspension polymerisation. Emulsion polymerisation can lead to rapid production of high molecular weight polymers but the unavoidable occlusion of large quantities of soap adversely affects the electrical insulation properties and the clarity of the polymer. [Pg.28]

In the early days of the commercial development of PVC, emulsion polymers were preferred for general purpose applications. This was because these materials exist in the form of the fine primary particles of diameter of the order of 0.1-1.0 p,m, which in the case of some commercial grades aggregate into hollow secondary particles or cenospheres with diameters of 30-100 p,m. These emulsion polymer particles have a high surface/volume ratio and fluxing and gelation with plasticisers is rapid. The use of such polymers was, however, restricted because of the presence of large quantities of soaps and other additives necessary to emulsion polymerisation which adversely affect clarity and electrical insulation properties. [Pg.321]

Bath-type heat exchangers can be either direct or indirect. In a direct bath exchanger, the heating medium exchanges heat directly with the fluid to be heated. The heat source for bath heaters can be a coil of a hot heat medium or steam, waste heat exhaust from an engine or turbine, or heat from electric immersion heaters. An example of a bath heater is an emulsion heater-treater of the type discussed in Volume 1. In this case, a fire tube immersed in the oil transfers heat directly to the oil bath. The calculation of heat duties and sizing of fire tubes for this type of heat exchanger can be calculated fom Chapter 2. [Pg.47]

Electrical isolation Heat radiation Cooling coils Recent incidents Vacuum relief valves Accidents at sea Fires Problem sources Emulsion breaking Chimney effects Interlock failure Choosing materials. [Pg.410]

Electrical Stability of Emuisions. The electrical stability test indicates the stability of emulsions of water in oil. The emulsion tester consists of a reliable circuit using a source of variable AC current (or DC current in portable units) connected to strip electrodes. The voltage imposed across the electrodes can be increased until a predetermined amount of current flows through the mud emulsion-breakdown point. Relative stability is indicated as the voltage at the breakdown point. [Pg.658]


See other pages where Electrical emulsions is mentioned: [Pg.181]    [Pg.381]    [Pg.181]    [Pg.381]    [Pg.128]    [Pg.502]    [Pg.513]    [Pg.31]    [Pg.245]    [Pg.447]    [Pg.439]    [Pg.292]    [Pg.576]    [Pg.472]    [Pg.294]    [Pg.199]    [Pg.200]    [Pg.200]    [Pg.1425]    [Pg.1443]    [Pg.1472]    [Pg.178]    [Pg.119]    [Pg.27]    [Pg.317]    [Pg.343]    [Pg.429]    [Pg.83]    [Pg.216]    [Pg.367]    [Pg.75]    [Pg.769]    [Pg.668]   
See also in sourсe #XX -- [ Pg.168 , Pg.169 ]




SEARCH



© 2024 chempedia.info