Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Clouds diffuse

Interstellar molecules are grouped by their location in three types of clouds diffuse, dark, and black clouds [1]. The diffuse clouds are characterized by low gas density, predominately... [Pg.388]

Electrophoresis is the motion of charged particles relative to the electrolyte in response to an applied DC-electric field the field causes a shift in the particle counterion cloud, the counterion-diminished end of the particle attracts other counterions from the bulk fluid, counterions from the displaced cloud diffuse out into the bulk fluid, and the particle migrates. The particle velocity is predicted by the Smoluchowski equation. [Pg.51]

There have been considerable amounts of theorising about the behaviour of ions in a solution such as an electrolyte. The layer of oppositely charged ions near a charged electrode is well established, but the possible extension of this layer into an ionic cloud diffusing far out into the electrolyte, as suggested by Gouy and Chapman (see Bockris et ah, 2000), is less clear. The model calculation presented in Chapter 2, Fig. 2.4 only exhibits very minor variations in charge away from the electrode, and this is probably what one... [Pg.128]

The alternative approach to computing the concentration distribution over the con-tinuum/neighbourhood scale is to consider that the canopy is a porous space with a lower wind speed (Uc) and different turbulence structure to that in the boundary layer flow above the obstacles. We differentiate between the situation where (Uc)/Uh is large enough for the canopy to be considered porous. Then over the neighbourhood scale for a short-period accidental release the resulting cloud diffuses above the canopy and travels over it at a speed Uh In most cases where the canopy is non-porous, the cloud/plume dispersion over the building/street scale takes place in a canyon or an enclosed space/courtyard. [Pg.75]

Fig. 7-8. Influence on cloud nuclei formation of the mass fraction e (water-soluble material/particle dry mass). Left Critical supersaturation of aerosol particles as a function of particle dry radius. Right Cloud nuclei spectra calculated for e = 0.1 and 1 on the basis of two size distributions each for continental and maritime aerosols (solid and dashed curves, respectively). [Adapted from Junge and McLaren (1971).] The curves for the maritime cloud nuclei spectra are displaced downward from the original data to normalize the total number density to 300 cm-3 instead of 600 cm-3 used originally. The curves for e = 1 give qualitatively the cumulative aerosol size distributions starting from larger toward smaller particles (sk = 10 4 corresponds to r0 0.26 p.m, sk = 3 x 10 3 to rs 0.025 Atn). Similar results were subsequently obtained by Fitzgerald (1973, 1974). The hatched areas indicate the ranges of cloud nuclei concentrations observed in cloud diffusion chambers with material sampled mainly by aircraft [see the summary of data by Junge and McLaren (1971)] the bar represents the maximum number density of cloud nuclei observed by Twomey (1963) in Australia. Fig. 7-8. Influence on cloud nuclei formation of the mass fraction e (water-soluble material/particle dry mass). Left Critical supersaturation of aerosol particles as a function of particle dry radius. Right Cloud nuclei spectra calculated for e = 0.1 and 1 on the basis of two size distributions each for continental and maritime aerosols (solid and dashed curves, respectively). [Adapted from Junge and McLaren (1971).] The curves for the maritime cloud nuclei spectra are displaced downward from the original data to normalize the total number density to 300 cm-3 instead of 600 cm-3 used originally. The curves for e = 1 give qualitatively the cumulative aerosol size distributions starting from larger toward smaller particles (sk = 10 4 corresponds to r0 0.26 p.m, sk = 3 x 10 3 to rs 0.025 Atn). Similar results were subsequently obtained by Fitzgerald (1973, 1974). The hatched areas indicate the ranges of cloud nuclei concentrations observed in cloud diffusion chambers with material sampled mainly by aircraft [see the summary of data by Junge and McLaren (1971)] the bar represents the maximum number density of cloud nuclei observed by Twomey (1963) in Australia.
Thermal gradient static cloud diffusion chamber... [Pg.202]

The current efficiency of the process is about 80%, and the loss is due to the metal cloud that leaves the cathode. Sodium ions are present at very high concentration in the cathode double layer, and a little is probably discharged and leaves the cathode surface as minute bubbles of sodium vapour in which a little aluminium is entrained. The cloud diffuses or is carried electrophoretically to the neighbourhood of the anode, where it is oxidised by the carbon dioxide. This explanation is supported by analysis of the gases leaving the anode, which contain 30% or more of carbon monoxide. [Pg.10]

The vapor cloud of evaporated droplets bums like a diffusion flame in the turbulent state rather than as individual droplets. In the core of the spray, where droplets are evaporating, a rich mixture exists and soot formation occurs. Surrounding this core is a rich mixture zone where CO production is high and a flame front exists. Air entrainment completes the combustion, oxidizing CO to CO2 and burning the soot. Soot bumup releases radiant energy and controls flame emissivity. The relatively slow rate of soot burning compared with the rate of oxidation of CO and unbumed hydrocarbons leads to smoke formation. This model of a diffusion-controlled primary flame zone makes it possible to relate fuel chemistry to the behavior of fuels in combustors (7). [Pg.412]

Two kinds of barriers are important for two-phase emulsions the electric double layer and steric repulsion from adsorbed polymers. An ionic surfactant adsorbed at the interface of an oil droplet in water orients the polar group toward the water. The counterions of the surfactant form a diffuse cloud reaching out into the continuous phase, the electric double layer. When the counterions start overlapping at the approach of two droplets, a repulsion force is experienced. The repulsion from the electric double layer is famous because it played a decisive role in the theory for colloidal stabiUty that is called DLVO, after its originators Derjaguin, Landau, Vervey, and Overbeek (14,15). The theory provided substantial progress in the understanding of colloidal stabihty, and its treatment dominated the colloid science Hterature for several decades. [Pg.199]

Fig. 17-4. Radiation heat balance. The 100 units of incoming shortwave radiahon are distributed reflected from earth s surface to space, 5 reflected from cloud surfaces to space, 20 direct reaching earth, 24 absorbed in clouds, 4 diffuse reaching earth through clouds, 17 absorbed in atmosphere, 15 scattered to space, 9 scattered to earth, 6. The longwave radiation comes from (1) the earth radiating 119 units 101 to the atmosphere and 18 directly to space, and (2) the atmosphere radiating 105 units back to earth and 48 to space. Additional transfers from the earth s surface to the atmosphere consist of latent heat, 23 and sensible heat, 10. Source After Lowry (4). Fig. 17-4. Radiation heat balance. The 100 units of incoming shortwave radiahon are distributed reflected from earth s surface to space, 5 reflected from cloud surfaces to space, 20 direct reaching earth, 24 absorbed in clouds, 4 diffuse reaching earth through clouds, 17 absorbed in atmosphere, 15 scattered to space, 9 scattered to earth, 6. The longwave radiation comes from (1) the earth radiating 119 units 101 to the atmosphere and 18 directly to space, and (2) the atmosphere radiating 105 units back to earth and 48 to space. Additional transfers from the earth s surface to the atmosphere consist of latent heat, 23 and sensible heat, 10. Source After Lowry (4).
The vertical temperature gradient (the lapse rate) is usually not monitored by routine meteorological observation, and it, too, must be approximated from estimates of solar insolation, solar angle, and differential heating due to uneven cloud cover. For purposes of diffusion analyses, the lapse rate is usually approximated by a constant. [Pg.290]

In addition to this convective cross flow of gas from the bubble into the emulsion phase of the cloud, mass transfer also occurs by diffusion into the emulsion. [Pg.35]

The effectiveness of a fluidized bed as a ehemical reactor depends to a large extent on the amount of convective and diffusive transfer between bubble gas and emulsion phase, since reaction usually occurs only when gas and solids are in contact. Often gas in the bubble cloud complex passes through the reactor in plug flow with little back mixing, while the solids are assumed to be well mixed. Actual reactor models depend greatly on kinetics and fluidization characteristics and become too complex to treat here. [Pg.35]

The distribution of tracer molecule residence times in the reactor is the result of molecular diffusion and turbulent mixing if tlie Reynolds number exceeds a critical value. Additionally, a non-uniform velocity profile causes different portions of the tracer to move at different rates, and this results in a spreading of the measured response at the reactor outlet. The dispersion coefficient D (m /sec) represents this result in the tracer cloud. Therefore, a large D indicates a rapid spreading of the tracer curve, a small D indicates slow spreading, and D = 0 means no spreading (hence, plug flow). [Pg.725]

The energy of large and medium-size eddies can be characterized by the turbulent diffusion coefficient. A, m-/s. This parameter is similar to the parameter used by Richardson to describe turbulent diffusion of clouds in the atmosphere. Turbulent diffusion affects heat and mass transfer between different zones in the room, and thus affects temperature and contaminant distribution in the room (e.g., temperature and contaminant stratification along the room height—see Chapter 8). Also, the turbulent diffusion coefficient is used in local exhaust design (Section 7.6). [Pg.433]

Turbulent eddies larger than the cloud size, as such, tend to move the cloud as a whole and do not influence the internal concentration distribution. The mean concentration distribution is largely determined by turbulent motion of a scale comparable to the cloud size. These eddies tend to break up the cloud into smaller and smaller parts, so as to render turbulent motion on smaller and smaller scales effective in generating fluctuations of ever smaller scales, and so on. On the small-scale side of the spectrum, concentration fluctuations are homogenized by molecular diffusion. [Pg.49]

When gas concentrations are high, burning is characterized by the presence of a tall, turbulent-diffusion, flame plume. At points where the cloud s vapor had already mixed sufficiently with air, the vertical depth of the visible burning zone is about equal to the initial, visible depth of the cloud. [Pg.151]

Upward diffusion of water vapor through the cold temperatures of the tropopause is very inefficient in fact, the upper limit of cloud formation often occurs at the tropopause. Thus the stratosphere is so dry as to prevent rain formation, and particles and gases have very much longer residence times there than in the troposphere. Stratospheric removal requires diffusion back through the tropopause, which then may be followed by precipitation scavenging. [Pg.65]

The rotational spectrum has been calculated accuratly by ab-initio methods [2], and has been measured in the laboratory with high precision [3,4], so that the radio detection of C3H2can be done without ambiguity, encouraging its search in different environments as dense dark clouds [5], diffuse interstellar medium [6] or Hll regions [7]. [Pg.401]

The first step in interstellar chemistry is the production of diatomic molecules, notably molecular hydrogen. Observations of atomic hydrogen in dense clouds show that this species cannot be detected except in a diffuse halo surrounding the cloud, so that an efficient conversion of H into H2 is necessary. In the gas phase this might be accomplished by the radiative association reaction,... [Pg.6]

A much more detailed and time-dependent study of complex hydrocarbon and carbon cluster formation has been prepared by Bettens and Herbst,83 84 who considered the detailed growth of unsaturated hydrocarbons and clusters via ion-molecule and neutral-neutral processes under the conditions of both dense and diffuse interstellar clouds. In order to include molecules up to 64 carbon atoms in size, these authors increased the size of their gas-phase model to include approximately 10,000reactions. The products of many of the unstudied reactions have been estimated via simplified statistical (RRKM) calculations coupled with ab initio and semiempirical energy calculations. The simplified RRKM approach posits a transition state between complex and products even when no obvious potential barrier... [Pg.33]


See other pages where Clouds diffuse is mentioned: [Pg.123]    [Pg.240]    [Pg.123]    [Pg.240]    [Pg.819]    [Pg.377]    [Pg.427]    [Pg.381]    [Pg.384]    [Pg.403]    [Pg.400]    [Pg.481]    [Pg.117]    [Pg.331]    [Pg.373]    [Pg.1022]    [Pg.128]    [Pg.151]    [Pg.934]    [Pg.5]    [Pg.91]    [Pg.274]    [Pg.726]    [Pg.251]    [Pg.89]    [Pg.187]    [Pg.46]    [Pg.3]    [Pg.15]    [Pg.32]    [Pg.33]   
See also in sourсe #XX -- [ Pg.360 ]




SEARCH



Cloud chamber diffusion

Diffuse interstellar clouds

Infrared laser-enhanced diffusion cloud

Infrared laser-enhanced diffusion cloud reactions

Upward Thermal Diffusion Cloud Chamber

© 2024 chempedia.info