Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

EDTA solution

Fortunately, in the presence of excess copper(II)nitrate, the elimination reaction is an order of magnitude slower than the desired Diels-Alder reaction with cyclopentadiene, so that upon addition of an excess of cyclopentadiene and copper(II)nitrate, 4.51 is converted smoothly into copper complex 4.53. Removal of the copper ions by treatment with an aqueous EDTA solution afforded in 71% yield crude Diels-Alder adduct 4.54. Catalysis of the Diels-Alder reaction by nickel(II)nitrate is also... [Pg.116]

In a back titration, a slight excess of the metal salt solution must sometimes be added to yield the color of the metal-indicator complex. Where metal ions are easily hydrolyzed, the complexing agent is best added at a suitable, low pH and only when the metal is fully complexed is the pH adjusted upward to the value required for the back titration. In back titrations, solutions of the following metal ions are commonly employed Cu(II), Mg, Mn(II), Pb(II), Th(IV), and Zn. These solutions are usually prepared in the approximate strength desired from their nitrate salts (or the solution of the metal or its oxide or carbonate in nitric acid), and a minimum amount of acid is added to repress hydrolysis of the metal ion. The solutions are then standardized against an EDTA solution (or other chelon solution) of known strength. [Pg.1167]

Standard EDTA Solutions. Disodium dihydrogen ethylenediaminetetraacetate dihydrate is available commercially of analytical reagent purity. After drying at 80°C for at least 24 hr, its composition agrees exactly with the dihydrate formula (molecular weight 372.25). It may be weighed directly. If an additional check on the concentration is required, it may be standardized by titration with nearly neutralized zinc chloride or zinc sulfate solution. [Pg.1168]

Water. Distilled water must be (a) redistilled in an all-Pyrex glass apparatus or (b) purified by passage through a column of cation exchange resin in the sodium form. For storage, polyethylene bottles are most satisfactory, particularly for very dilute (0.00 lAf) EDTA solutions. [Pg.1169]

Using this preparation, a 500 mg oxalate calculus obtained surgically was almost completely dissolved within 60 hours. When the solution pH was lowered to 6.0, the dissolution efficiency dropped appreciably and 200 mg of the stone remained undissolved after 60 hours. In another experiment a 5 % EDTA solution adjusted to pH 6.0 was applied in vitro to a phosphate kidney calculus (400 mg) which dissolved almost completely in 30 hours. However, clinical experience indicates that EDTA is still far from ideal for dissolving oxalate and phosphate calculi because of the very long time required for dissolution of the calculi. [Pg.133]

Discussion. Beryllium forms an acetylacetone complex, which is soluble in chloroform, and yields an absorption maximum at 295 nm. The excess of acetylacetone in the chloroform solution may be removed by rapid washing with O.lM-sodium hydroxide solution. It is advisable to treat the solution containing up to 10 g of Be with up to 10 mL of 2 per cent EDTA solution the latter will mask up to 1 mg of Fe, Al, Cr, Zn, Cu, Pb, Ag, Ce, and U. [Pg.175]

EDTA solution, 1 per cent w/v. Use the disodium salt of EDTA. [Pg.176]

Procedure. Dissolve 0.0393 g of pure copper(II) sulphate pentahydrate in 1 L of water in a graduated flask. Pipette 10.0 mL of this solution (containing about 100 jug Cu) into a beaker, add 5.0 mL of 25 per cent aqueous citric acid solution, render slightly alkaline with dilute ammonia solution and boil off the excess of ammonia alternatively, adjust to pH 8.5 using a pH meter. Add 15.0mL of 4 per cent EDTA solution and cool to room temperature. Transfer to a separatory funnel, add lOmL of 0.2 per cent aqueous sodium diethyldithiocarbamate solution, and shake for 45 seconds. A yellow-brown colour develops in the solution. Pipette 20 mL of butyl acetate (ethanoate) into the funnel and shake for 30 seconds. The organic layer acquires a yellow colour. Cool, shake for 15 seconds and allow the phases to separate. Remove the lower aqueous... [Pg.177]

EDTA solution, 10 M. Dissolve 3.7225 g of analytical grade disodium salt in distilled water and dilute to 100 mL. [Pg.182]

A. Direct titration. The solution containing the metal ion to be determined is buffered to the desired pH (e.g. to PH = 10 with NH4-aq. NH3) and titrated directly with the standard EDTA solution. It may be necessary to prevent precipitation of the hydroxide of the metal (or a basic salt) by the addition of some auxiliary complexing agent, such as tartrate or citrate or triethanolamine. At the equivalence point the magnitude of the concentration of the metal ion being determined decreases abruptly. This is generally determined by the change in colour of a metal indicator or by amperometric, spectrophotometric, or potentiometric methods. [Pg.311]

B. Back-titration. Many metals cannot, for various reasons, be titrated directly thus they may precipitate from the solution in the pH range necessary for the titration, or they may form inert complexes, or a suitable metal indicator is not available. In such cases an excess of standard EDTA solution is added, the resulting solution is buffered to the desired pH, and the excess of the EDTA is back-titrated with a standard metal ion solution a solution of zinc chloride or sulphate or of magnesium chloride or sulphate is often used for this purpose. The end point is detected with the aid of the metal indicator which responds to the zinc or magnesium ions introduced in the back-tit ration. [Pg.311]

The hydrogen ions thus set free can be titrated with a standard solution of sodium hydroxide using an acid-base indicator or a potentiometric end point alternatively, an iodate-iodide mixture is added as well as the EDTA solution and the liberated iodine is titrated with a standard thiosulphate solution. [Pg.312]

Sulphate may be determined by precipitation as barium sulphate or as lead sulphate. The precipitate is dissolved in an excess of standard EDTA solution, and the excess of EDTA is back-titrated with a standard magnesium or zinc solution using solochrome black as indicator. [Pg.312]

Phosphate may be determined by precipitating as Mg(NH4)P04,6H20, dissolving the precipitate in dilute hydrochloric acid, adding an excess of standard EDTA solution, buffering at pH = 10, and back-titrating with standard magnesium ion solution in the presence of solochrome black. [Pg.312]

Thymolphthalein complexone (thymolphthalexone). This is thymolphthalein di(methyliminediacetic acid) it contains a stable lactone ring and reacts only in an alkaline medium. The indicator may be used for the titration of calcium the colour change is from blue to colourless (or a slight pink). Manganese and also nickel may be determined by adding an excess of standard EDTA solution,... [Pg.319]

Pipette 25 mL of an aluminium ion solution (approximately 0.01 M) into a conical flask and from a burette add a slight excess of 0.01 M EDTA solution adjust the pH to between 7 and 8 by the addition of ammonia solution (test drops on phenol red paper or use a pH meter). Boil the solution for a few minutes to ensure complete complexation of the aluminium cool to room temperature and adjust the pH to 7-8. Add 50 mg of solochrome black/potassium nitrate mixture [see Section 10.50(C)] and titrate rapidly with standard 0.01 M zinc sulphate solution until the colour changes from blue to wine red. [Pg.324]

Pipette 25 mL of the bismuth solution (approx. 0.01 M) into a 500 mL conical flask and dilute with de-ionised water to about 150 mL. If necessary, adjust the pH to about 1 by the cautious addition of dilute aqueous ammonia or of dilute nitric acid use a pH meter. Add 30 mg of the xylenol orange/potassium nitrate mixture (see Section 10.50) and then titrate with standard 0.01 M EDTA solution until the red colour starts to fade. From this point add the titrant slowly until the end point is reached and the indicator changes to yellow. [Pg.324]

Pipette 25.0 mL of the 0.01 M calcium ion solution into a 250mL conical flask, dilute it with about 25 mL of distilled water, add 2mL buffer, solution, 1 mL 0.1M Mg-EDTA, and 30-40mg solochrome black/potassium nitrate mixture. Titrate with the EDTA solution until the colour changes from wine red to clear blue. No tinge of reddish hue should remain at the equivalence point. Titrate slowly near the end point. [Pg.326]

Pipette 25 mL of the copper solution (0.01 M) into a conical flask, add 100 mL de-ionised water, 5 mL concentrated ammonia solution and 5 drops of the indicator solution. Titrate with standard EDTA solution (0.01 M) until the colour changes from purple to dark green. [Pg.326]

Pipette 25 mL iron(III) solution (0.05M) into a conical flask and dilute to 100 mL with de-ionised water. Adjust the pH to 2-3 Congo red paper may be used — to the first perceptible colour change. Add 5 drops of the indicator solution, warm the contents of the flask to 40 °C, and titrate with standard (0.05M) EDTA solution until the initial blue colour of the solution turns grey just before the end point, and with the final drop of reagent changes to yellow. [Pg.326]

Pipette 25 mL nickel solution (0.01 M) into a conical flask and dilute to 100mL with de-ionised water. Add the solid indicator mixture (50mg) and 10 mL of the 1M ammonium chloride solution, and then add concentrated ammonia solution dropwise until the pH is about 7 as shown by the yellow colour of the solution. Titrate with standard (0.01 M) EDTA solution until the end point is approached, then render the solution strongly alkaline by the addition of 10 mL of concentrated ammonia solution, and continue the titration until the colour changes from yellow to violet. The pH of the final solution must be 10 at lower pH values an orange-yellow colour develops and more ammonia solution must be added until the colour is clear yellow. Nickel complexes rather slowly with EDTA, and consequently the EDTA solution must be added dropwise near the end point. [Pg.327]

Palladium(II) compounds can be determined by a similar procedure, but in this case, after addition of the cyanonickelate, excess of standard (0.01 M) EDTA solution is added, and the excess is back-titrated with standard (0.01 M) manganese(II) sulphate solution using solochrome black indicator. [Pg.328]

Buffer solution. Add 55 mL of concentrated hydrochloric acid to 400 mL de-ionised water and mix thoroughly. Slowly pour 310 mL of redistilled monoethanolamine with stirring into the mixture and cool to room temperature (Note 2). Titrate 50.0 mL of the standard magnesium chloride solution with standard (0.01M) EDTA solution using 1 mL of the monoethanolamine-hydrochloric acid solution as the buffer and solochrome black as the indicator. Add 50.0 mL of the magnesium chloride solution to the volume of EDTA solution required to complex the magnesium exactly (as determined in the last titration), pour the mixture into the monoethanolamine-hydrochloric acid solution, and mix well. Dilute to 1 litre (Note 3). [Pg.330]

Determination of calcium. Pipette two 25.0 mL portions of the mixed calcium and magnesium ion solution (not more than 0.01M with respect to either ion) into two separate 250 mL conical flasks and dilute each with about 25 mL of de-ionised water. To the first flask add 4 mL 8 M potassium hydroxide solution (a precipitate of magnesium hydroxide may be noted here), and allow to stand for 3-5 minutes with occasional swirling. Add about 30 mg each of potassium cyanide (Caution poison) and hydroxylammonium chloride and swirl the contents of the flask until the solids dissolve. Add about 50 mg of the HHSNNA indicator mixture and titrate with 0.01 M EDTA until the colour changes from red to blue. Run into the second flask from a burette a volume of EDTA solution equal to that required to reach the end point less 1 mL. Now add 4 mL of the potassium hydroxide solution, mix well and complete the titration as with the first sample record the exact volume of EDTA solution used. Perform a blank titration, replacing the sample with de-ionised water. [Pg.330]

Calculate the volume of standard EDTA solution equivalent to the magnesium by subtracting the total volume required for the calcium from the volume required for the total calcium and magnesium for equal amounts of the test sample. [Pg.331]

Procedure. To a 50 mL sample of the water to be tested add 1 mL buffer solution (ammonium hydroxide/ammonium chloride, pH 10, Section 10.54) and 30-40 mg solochrome black indicator mixture. Titrate with standard EDTA solution (0.01 M) until the colour changes from red to pure blue. Should there be no magnesium present in the sample of water it is necessary to add 0.1 mL magnesium-EDTA solution (0.1 M) before adding the indicator (see Section 10.54). The total hardness is expressed in parts of CaC03 per million of water. [Pg.332]

Procedure. Pipette 25 mL of the test solution (which may contain both calcium and lead at concentrations of up to 0.01 M) into a 250 mL conical flask and dilute to 100 mL with de-ionised water. Add about 50 mg of methylthymol blue/potassium nitrate mixture followed by dilute nitric acid until the solution is yellow, and then add powdered hexamine until the solution has an intense blue colour (pH ca 6). Titrate with standard (0.01 M) EDTA solution until the colour turns to yellow this gives the titration value for lead. [Pg.333]

EDTA solution until the colour changes to grey this gives the titration value for calcium. [Pg.334]

Procedure. Prepare a manganese(II) sulphate solution (approx. 0.05M) by dissolving 11.15 g of the analytical-grade solid in 1 L of de-ionised water standardise the solution by titration with 0.05 M EDTA solution using solochrome black indicator after the addition of 0.25 g of hydroxylammonium chloride — see below. [Pg.334]

Pipette 25 mL of the solution containing magnesium, manganese and zinc ions (each approx. 0.02M), into a 250 mL conical flask and dilute to 100 mL with de-ionised water. Add 0.25 g hydroxylammonium chloride [this is to prevent oxidation of Mn(II) ions], followed by 10 mL of the buffer solution and 30-40 mg of the indicator/potassium nitrate mixture. Warm to 40 °C and titrate (preferably stirring magnetically) with the standard EDTA solution to a pure blue colour. [Pg.334]


See other pages where EDTA solution is mentioned: [Pg.657]    [Pg.133]    [Pg.175]    [Pg.176]    [Pg.208]    [Pg.211]    [Pg.310]    [Pg.314]    [Pg.321]    [Pg.321]    [Pg.321]    [Pg.323]    [Pg.325]    [Pg.326]    [Pg.330]    [Pg.331]    [Pg.331]    [Pg.335]   


SEARCH



EDTA

EDTA Buffer, pH 8 (1 mM Working Solution)

EDTA solutions composition

EDTA solutions constants)

Magnesium-EDTA solutions, displacement

Species Existing in Solution When a Metallic Ion Is Titrated with EDTA

Standard EDTA solutions

Standardisation of EDTA Solution

© 2024 chempedia.info