Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solochrome black

Solochrome black indicator mixture. Triturate 0.20 g of the solid dyestuff with 50 g of potassium chloride. [Pg.211]

Analyses, (a) Original zinc-ion solution. Dilute 2.00 mL (pipette) to 100 mL in a graduated flask. Pipette 10.0 mL of the diluted solution into a 250 mL conical flask, add ca 90 mL of water, 2 mL of the buffer solution, and sufficient of the solochrome black indicator mixture to impart a pronounced red colour to the solution. Titrate with standard 0.01 M EDTA to a pure blue colour (see Section 10.59). [Pg.211]

An interesting application is the titration of calcium. In the direct titration of calcium ions, solochrome black gives a poor end point if magnesium is present, it is displaced from its EDTA complex by calcium and an improved end point results (compare Section 10.51). [Pg.311]

Sulphate may be determined by precipitation as barium sulphate or as lead sulphate. The precipitate is dissolved in an excess of standard EDTA solution, and the excess of EDTA is back-titrated with a standard magnesium or zinc solution using solochrome black as indicator. [Pg.312]

Phosphate may be determined by precipitating as Mg(NH4)P04,6H20, dissolving the precipitate in dilute hydrochloric acid, adding an excess of standard EDTA solution, buffering at pH = 10, and back-titrating with standard magnesium ion solution in the presence of solochrome black. [Pg.312]

Add excess of standard EDTA and back-titrate with standard Mg solution using solochrome black as indicator. This gives the sum of all the metals present. [Pg.313]

The indicator colour change is affected by the hydrogen ion concentration of the solution, and no account of this has been taken in the above expression for the formation constant. Thus solochrome black, which may be written as H2In , exhibits the following acid-base behaviour ... [Pg.315]

Solochrome black (eriochrome black T). This substance is sodium 1-(1-hydroxy-2-naphthylazo)-6-nitro-2-naphthol-4-sulphonate, and has the Colour Index reference C.I. 14645. In strongly acidic solutions the dye tends to polymerise to a red-brown product, and consequently the indicator is rarely applied in titrations of solutions more acidic than pH = 6.5. [Pg.317]

This colour change can be observed with the ions of Mg, Mn, Zn, Cd, Hg, Pb, Cu, Al, Fe, Ti, Co, Ni, and the Pt metals. To maintain the pH constant (ca 10) a buffer mixture is added, and most of the above metals must be kept in solution with the aid of a weak complexing reagent such as ammonia or tartrate. The cations of Cu, Co, Ni, Al, Fe(III), Ti(IV), and certain of the Pt metals form such stable indicator complexes that the dyestuff can no longer be liberated by adding EDTA direct titration of these ions using solochrome black as indicator is therefore impracticable, and the metallic ions are said to block the indicator. However, with Cu, Co, Ni, and Al a back-titration can be carried out, for the rate of reaction of their EDTA complexes with the indicator is extremely slow and it is possible to titrate the excess of EDTA with standard zinc or magnesium ion solution. [Pg.317]

Cu, Ni, Co, Cr, Fe, or Al, even in traces, must be absent when conducting a direct titration of the other metals listed above if the metal ion to be titrated does not react with the cyanide ion or with triethanolamine, these substances can be used as masking reagents. It has been stated that the addition of 0.5-1 mL of 0.001 M o-phenanthroline prior to the EDTA titration eliminates the blocking effect of these metals with solochrome black and also with xylenol orange (see below). [Pg.317]

Calmagite. This indicator, l-(l-hydroxyl-4-methyl-2-phenylazo)-2-naphthol-4-sulphonic acid, has the same colour change as solochrome black, but the colour change is somewhat clearer and sharper. An important advantage is that aqueous solutions of the indicator are stable almost indefinitely. It may be substituted for solochrome black without change in the experimental procedures for the titration of calcium plus magnesium (see Sections 10.54 and 10.62). Calmagite functions as an acid-base indicator ... [Pg.318]

Pipette 25 mL of an aluminium ion solution (approximately 0.01 M) into a conical flask and from a burette add a slight excess of 0.01 M EDTA solution adjust the pH to between 7 and 8 by the addition of ammonia solution (test drops on phenol red paper or use a pH meter). Boil the solution for a few minutes to ensure complete complexation of the aluminium cool to room temperature and adjust the pH to 7-8. Add 50 mg of solochrome black/potassium nitrate mixture [see Section 10.50(C)] and titrate rapidly with standard 0.01 M zinc sulphate solution until the colour changes from blue to wine red. [Pg.324]

After standing for a few minutes the fully titrated solution acquires a reddish-violet colour due to the transformation of the zinc dye complex into the aluminium-solochrome black complex this change is irreversible, so that over-titrated solutions are lost. [Pg.324]

With calcium ions alone, no sharp end point can be obtained with solochrome black indicator and the transition from red to pure blue is not observed. With magnesium ions, a somewhat less stable complex is formed ... [Pg.325]

Traces of many metals interfere in the determination of calcium and magnesium using solochrome black indicator, e.g. Co, Ni, Cu, Zn, Hg, and Mn. Their interference can be overcome by the addition of a little hydroxylammonium chloride (which reduces some of the metals to their lower oxidation states), or also of sodium cyanide or potassium cyanide which form very stable cyanide complexes ( masking ). Iron may be rendered harmless by the addition of a little sodium sulphide. [Pg.325]

The titration with EDTA, using solochrome black as indicator, will yield the calcium content of the sample (if no magnesium is present) or the total calcium and magnesium content if both metals are present. To determine the individual elements, calcium may be evaluated by titration using a suitable indicator, e.g., Patton and Reeder s indicator or calcon — see Sections 10.48 and 10.60, or by titration with EGTA using zincon as indicator — see Section 10.61. The difference between the two titrations is a measure of the magnesium content. [Pg.325]

Pipette 25.0 mL of the 0.01 M calcium ion solution into a 250mL conical flask, dilute it with about 25 mL of distilled water, add 2mL buffer, solution, 1 mL 0.1M Mg-EDTA, and 30-40mg solochrome black/potassium nitrate mixture. Titrate with the EDTA solution until the colour changes from wine red to clear blue. No tinge of reddish hue should remain at the equivalence point. Titrate slowly near the end point. [Pg.326]

Palladium(II) compounds can be determined by a similar procedure, but in this case, after addition of the cyanonickelate, excess of standard (0.01 M) EDTA solution is added, and the excess is back-titrated with standard (0.01 M) manganese(II) sulphate solution using solochrome black indicator. [Pg.328]

BPR = bromopyrogallol red FSB = fast sulphone black F M = murexide MTB = methylthymol blue SB = solochrome black TPX = thymolphthalexone VB = variamine blue XO = xylenol orange. [Pg.329]

Procedure. Prepare the indicators by grinding (a) 0.5 g HHSNNA with 50 g potassium chloride, and (b) 0.2 g solochrome black with 50 g potassium chloride. The following solutions will also be required ... [Pg.330]

Buffer solution. Add 55 mL of concentrated hydrochloric acid to 400 mL de-ionised water and mix thoroughly. Slowly pour 310 mL of redistilled monoethanolamine with stirring into the mixture and cool to room temperature (Note 2). Titrate 50.0 mL of the standard magnesium chloride solution with standard (0.01M) EDTA solution using 1 mL of the monoethanolamine-hydrochloric acid solution as the buffer and solochrome black as the indicator. Add 50.0 mL of the magnesium chloride solution to the volume of EDTA solution required to complex the magnesium exactly (as determined in the last titration), pour the mixture into the monoethanolamine-hydrochloric acid solution, and mix well. Dilute to 1 litre (Note 3). [Pg.330]

The monoethanolamine-hydrochloric acid buffer has a buffering capacity equal to the ammonia-ammonium chloride buffer commonly employed for the titration of calcium and magnesium with EDTA and solochrome black (compare Section 10.54). The buffer has excellent keeping qualities, sharp end points are obtainable, and the strong ammonia solution is completely eliminated. [Pg.331]

Procedure. To a 50 mL sample of the water to be tested add 1 mL buffer solution (ammonium hydroxide/ammonium chloride, pH 10, Section 10.54) and 30-40 mg solochrome black indicator mixture. Titrate with standard EDTA solution (0.01 M) until the colour changes from red to pure blue. Should there be no magnesium present in the sample of water it is necessary to add 0.1 mL magnesium-EDTA solution (0.1 M) before adding the indicator (see Section 10.54). The total hardness is expressed in parts of CaC03 per million of water. [Pg.332]

Procedure. Prepare a manganese(II) sulphate solution (approx. 0.05M) by dissolving 11.15 g of the analytical-grade solid in 1 L of de-ionised water standardise the solution by titration with 0.05 M EDTA solution using solochrome black indicator after the addition of 0.25 g of hydroxylammonium chloride — see below. [Pg.334]

The sulphate is precipitated as barium sulphate from acid solution, the precipitate is filtered off and dissolved in a measured excess of standard EDTA solution in the presence of aqueous ammonia. The excess of EDTA is then titrated with standard magnesium chloride solution using solochrome black as indicator. [Pg.340]

Two methods are commonly used for the determination of magnesium. Titan yellow may be used to obtain a coloured colloidal suspension, or solochrome black to give a red soluble complex. In most cases the second of these is to be preferred. [Pg.692]

Solochrome black solution. Prepare a 0.1 per cent solution in methanol warm to speed solution and filter. [Pg.693]

Procedure. Transfer the neutral sample solution (<100 gMg), free from calcium and other metals, to a 100 mL graduated flask with calibrated neck. Add 25 mL of the buffer solution, dilute to just below the 90 mL graduation mark, and shake. Add 10.0 mL of the solochrome black solution carefully. Shake to mix and dilute to the 100 mL mark with water. Measure the absorbance immediately at 520 nm (green filter) against that of a blank solution, similarly prepared but containing no magnesium. [Pg.693]

Solder analysis of by EDTA, (ti) 337 Solochrome black 317, 692 Solochrome (Eriochrome) cyanine R 678 Solochrome dark blue 318 Solubility product 24 calculations involving, 25 importance of, 26 principal limitations of, 24 Solution of sample 110 Solvents amphiprotic, 282 aprotic, 282 ionising, 18 non-protonic, 18 protogenic, 18, 282 protophilic, 282... [Pg.874]

Solar energy, 6, 488 surface modified electrodes, 6, 30 Sol-Gel process fast reactor fuel, 6, 924 Solid state reactions, 1, 463-471 fraction of reaction, 1, 464 geometric, 1, 464 growth, 1, 464 nucleation, 1, 464 rate laws, 1,464 Solochrome black T metallochromic indicators, 1,555 Solubility... [Pg.224]

Solochrome black T, solochrome dark blue at 520 nm [109] W(VI)-catechol violet at 650 nm [110] o-Hydroxy-quinolphthalein at 525 nm [111]... [Pg.135]


See other pages where Solochrome black is mentioned: [Pg.208]    [Pg.212]    [Pg.316]    [Pg.317]    [Pg.318]    [Pg.318]    [Pg.325]    [Pg.326]    [Pg.329]    [Pg.331]    [Pg.331]    [Pg.339]    [Pg.340]    [Pg.340]    [Pg.692]    [Pg.867]    [Pg.165]    [Pg.555]   
See also in sourсe #XX -- [ Pg.165 ]

See also in sourсe #XX -- [ Pg.6 , Pg.473 ]




SEARCH



Solochrome Black WDFA

Solochrome black indicator

© 2024 chempedia.info