Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dopamine Monoamine

SSRls are involved in the actions of the three best known neurotransmitters-serotonin, norepinephrine, and dopamine-monoamines metabolized by the enzyme MAO. MAO inhibitors inhibit SSRI action. These three amines have been found to be low in the brains... [Pg.4]

Dopamine. Dopamine (DA) (2) is an intermediate in the synthesis of NE and Epi from tyrosine. DA is localized to the basal ganglia of the brain and is involved in the regulation of motor activity and pituitary hormone release. The actions of DA are terminated by conversion to dihydroxyphenylacetic acid (DOPAC) by monoamine oxidase-A and -B (MAO-A and -B) in the neuron following reuptake, or conversion to homovanillic acid (HVA) through the sequential actions of catechol-0-methyl transferase (COMT) and MAO-A and -B in the synaptic cleft. [Pg.540]

Future Outlook for Antidepressants. Third-generation antidepressants are expected to combine superior efficacy and improved safety, but are unlikely to reduce the onset of therapeutic action in depressed patients (179). Many dmgs in clinical development as antidepressive agents focus on estabhshed properties such as inhibition of serotonin, dopamine, and/or noradrenaline reuptake, agonistic or antagonistic action at various serotonin receptor subtypes, presynaptic tt2-adrenoceptor antagonism, or specific monoamine—oxidase type A inhibition. Examples include buspirone (3) (only... [Pg.233]

Monoamine Oxidase Inhibitors. MAOIs inactivate the enzyme MAO, which is responsible for the oxidative deamination of a variety of endogenous and exogenous substances. Among the endogenous substances are the neurotransmitters, norepinephrine, dopamine, and serotonin. The prototype MAOI is iproniazid [54-92-2] (25), originally tested as an antitubercular dmg and a close chemical relative of the effective antitubercular, isoniazid [54-85-3] (26). Tubercular patients exhibited mood elevation, although no reHef of their tuberculosis, following chronic administration of iproniazid. In... [Pg.465]

Copper is one of the twenty-seven elements known to be essential to humans (69—72) (see Mineral nutrients). The daily recommended requirement for humans is 2.5—5.0 mg (73). Copper is probably second only to iron as an oxidation catalyst and oxygen carrier in humans (74). It is present in many proteins, such as hemocyanin [9013-32-3] galactose oxidase [9028-79-9] ceruloplasmin [9031 -37-2] dopamine -hydroxylase, monoamine oxidase [9001-66-5] superoxide dismutase [9054-89-17, and phenolase (75,76). Copper aids in photosynthesis and other oxidative processes in plants. [Pg.256]

Together with dopamine, adrenaline and noradrenaline belong to the endogenous catecholamines that are synthesized from the precursor amino acid tyrosine (Fig. 1). In the first biosynthetic step, tyrosine hydroxylase generates l-DOPA which is further converted to dopamine by the aromatic L-amino acid decarboxylase ( Dopa decarboxylase). Dopamine is transported from the cytosol into synaptic vesicles by a vesicular monoamine transporter. In sympathetic nerves, vesicular dopamine (3-hydroxylase generates the neurotransmitter noradrenaline. In chromaffin cells of the adrenal medulla, approximately 80% of the noradrenaline is further converted into adrenaline by the enzyme phenylethanolamine-A-methyltransferase. [Pg.42]

The principal mechanism for terminating dopamine signaling is reuptake by the presynaptic neuron via the dopamine transporter (DAT). Dopamine that is not taken up is metabolized by the enzymes monoamine oxidase (MAO) and catechol-O-methyl transferase... [Pg.439]

Ubiquitous mitochondrial monoamine oxidase [monoamine oxygen oxidoreductase (deaminating) (flavin-containing) EC 1.4.3.4 MAO] exists in two forms, namely type A and type B [ monoamine oxidase (MAO) A and B]. They are responsible for oxidative deamination of primary, secondary, and tertiary amines, including neurotransmitters, adrenaline, noradrenaline, dopamine (DA), and serotonin and vasoactive amines, such as tyramine and phenylethylamine. Their nonselec-tive and selective inhibitors ( selective MAO-A and -B inhibitors) are employed for the treatment of depressive illness and Parkinson s disease (PD). [Pg.783]

Acute treatment with nonselective MAO inhibitors (iproniazid, tranylcypromine, phenelzine), as a consequence of inhibiting both forms of the enzyme, increase, brain levels of all monoamines (phenylethylamine, tryptamine, methylhistamine aminergic neurotransmitters (dopamine, noradr enaline, adrenaline and serotonin). By contrast MAO-A inhibitors (clorgyline) increase serotonin and noradrenaline, while MAO-B inhibitors (selegiline, rasagiline) increase brain levels... [Pg.784]

The transporters for 5HT, noradrenaline and dopamine, biogenic monoamines, are genetically related, exist as single isoforms and are expressed on the surface of nerve cells, which use monoamines as (or convert them into) their cognate neurotransmitter. The single-isoform monoamine transporters fulfil all three fundamental functions (reuptake, limiting synaptic transmission, and control of the extracellular neurotransmitter concentration). Inactivation of DAT, NET, or SERT results in an increased extracellular lifetime and level of monoamine neurotransmitter, but decreased intracellular storage and evoked release (Fig. 3). [Pg.839]

Cocaine and desipramine inhibit the reuptake of monoamine neurotransmitters whereas amphetamine, which is a phenylalkylamine - similar in structure to the catecholamines, see Fig. 4 - competes for uptake and more importantly, evokes efflux of the monoamine neurotransmitters. All of them exert antidepressant effects. Cocaine and amphetamine are addictive whereas tricyclic antidepressants and their modern successors are not. The corollaty of the addictive properties is interference with DAT activity. Blockade of DAT by cocaine or efflux elicited by amphetamine produces a psychostimulant effect despite the different mechanisms even the experienced individual can hardly discern their actions. Because of the risk associated with inhibiting DAT mediated dopamine clearance the antidepressant effects of psychostimulants has not been exploited. [Pg.841]

The patty drug MDMA (3,4-methylene-dioxymetham-phetamine) as well as amphetamine causes efflux of all monoamine neurotransmitters. The effects of MDMA are described as psychostimulant and hallucinogenic and are judged differently from those of amphetamine. This difference is due to the stronger inhibition of SERT by MDMA as compared with amphetamine, which is a more potent dopamine releaser and moreaddictivethan MDMA. [Pg.841]

Methylphenidate like cocaine largely acts by blocking reuptake of monoamines into the presynaptic terminal. Methylphenidate administration produces an increase in the steady-state (tonic) levels of monoamines within the synaptic cleft. Thus, DAT inhibitors, such as methylphenidate, increase extracellular levels of monoamines. In contrast, they decrease the concentrations of the monoamine metabolites that depend upon monoamine oxidase (MAO), that is, HVA, but not catecholamine-o-methyltransferase (COMT), because reuptake by the transporter is required for the formation of these metabolites. By stimulating presynaptic autoreceptors, methylphenidate induced increase in dopamine transmission can also reduce monoamine synthesis, inhibit monoamine neuron firing and reduce subsequent phasic dopamine release. [Pg.1039]

The pharmacology of amphetamine is considerably more complex. It does not only block monoamine reuptake, but also directly inhibits the vesicular monoamine transporter, causing an increase in cytosolic but not vesicular dopamine concentration. This may lead to reverse transport of the amines via the membrane-bound transporters. Further mechanisms of amphetamine action are direct MAO inhibition and indirect release of both dopamine and serotonin in the striatum. [Pg.1039]

At low doses, both psychostimulants could theoretically stimulate tonic, extracellular levels of monoamines, and the small increase in steady state levels would produce feedback inhibition of further release by stimulating presynaptic autoreceptors. While this mechanism is clearly an important one for the normal regulation of monoamine neurotransmission, there is no direct evidence to support the notion that the doses used clinically to treat ADHD are low enough to have primarily presynaptic effects. However, alterations in phasic dopamine release could produce net reductions in dopamine release under putatively altered tonic dopaminergic conditions that might occur in ADHD and that might explain the beneficial effects of methylphenidate in ADHD. [Pg.1040]

Another theory for the action of stimulant diugs in ADHD involves effects on nonstiiatal monoamine systems. Frontal cortical dopamine, norepinephrine, and serotonin are clearly important in cognitive functioning and impulse control. These neurotransmitters directly modulate reward-related behaviors associated with the striatal dopamine system. Moreover, the amygdala may be pharmacologically influenced leading to enhanced... [Pg.1042]

There are numerous transmitter substances. They include the amino acids glutamate, GABA and glycine acetylcholine the monoamines dopamine, noradrenaline and serotonin the neuropeptides ATP and NO. Many neurones use not a single transmitter but two or even more, a phenomenon called cotransmission. Chemical synaptic transmission hence is diversified. The basic steps, however, are similar across all neurones, irrespective of their transmitter, with the exception of NO transmitter production and vesicular storage transmitter release postsynaptic receptor activation and transmitter inactivation. Figure 1 shows an overview. Nitrergic transmission, i.e. transmission by NO, differs from transmission by other transmitters and is not covered in this essay. [Pg.1170]

Trace amines are a family of endogenous monoamine compounds including (3-phenylethylamine (PEA), p-tyramine (TYR), tryptamine (TRP) and octopamine (OCT). The trace amines share close structural similarity with the well known classical monoamine neurotransmitters such as dopamine (DA), norepinephrine (NE) and serotonin (5-HT). As their name suggests, trace amines occur in comparably much lower abundance than monoamine neurotransmitters. For historical reasons, other endogenous amine compounds which might share some structural similarities with PEA, TYR, TRP or OCT are not referred to as trace amines. [Pg.1218]

The synthesis and metabolism of trace amines and monoamine neurotransmitters largely overlap [1]. The trace amines PEA, TYR and TRP are synthesized in neurons by decarboxylation of precursor amino acids through the enzyme aromatic amino acid decarboxylase (AADC). OCT is derived from TYR. by involvement of the enzyme dopamine (3-hydroxylase (Fig. 1 DBH). The catabolism of trace amines occurs in both glia and neurons and is predominantly mediated by monoamine oxidases (MAO-A and -B). While TYR., TRP and OCT show approximately equal affinities toward MAO-A and MAO-B, PEA serves as preferred substrate for MAO-B. The metabolites phenylacetic acid (PEA), hydroxyphenylacetic acid (TYR.), hydroxymandelic acid (OCT), and indole-3-acetic (TRP) are believed to be pharmacologically inactive. [Pg.1218]

Trace Amines. Figure 1 The main routes of trace amine metabolism. The trace amines (3-phenylethylamine (PEA), p-tyramine (TYR), octopamine (OCT) and tryptamine (TRP), highlighted by white shading, are each generated from their respective precursor amino acids by decarboxylation. They are rapidly metabolized by monoamine oxidase (MAO) to the pharmacologically inactive carboxylic acids. To a limited extent trace amines are also A/-methylated to the corresponding secondary amines which are believed to be pharmacologically active. Abbreviations AADC, aromatic amino acid decarboxylase DBH, dopamine b-hydroxylase NMT, nonspecific A/-methyltransferase PNMT, phenylethanolamine A/-methyltransferase TH, tyrosine hydroxylase. [Pg.1219]

The amphetamine-like properties of trace amines are best described for PEA which shares close structural similarity to amphetamine and can displace monoamine neurotransmitters from synaptic vesicles and trigger their release into the synaptic cleft by acting on the dopamine transporter. However, this effect is only observed at high, supra-physiological PEA concentrations and thus might not occur under physiological conditions. [Pg.1220]

The vesicular monoamine transporters (VMATs) were identified in a screen for genes that confer resistance to the parkinsonian neurotoxin MPP+ [2]. The resistance apparently results from sequestration of the toxin inside vesicles, away from its primary site of action in mitochondria. In addition to recognizing MPP+, the transporter s mediate the uptake of dopamine, ser otonin, epinephrine, and norepinephrine by neurons and endocrine cells. Structurally, the VMATs show no relationship to plasma membrane monoamine transporters. [Pg.1280]

The COMT inhibitors should not be administered with the monoamine oxidase (MAO) inhibitors (see Chap. 31) because there is an increased risk of toxicity. If the COMT inhibitors are administered with norepinephrine, dopamine, dobutamine, methyldopa, or epinephrine, there is a risk of increased heart rate, arrhythmias, and excessive blood pressure changes. [Pg.269]


See other pages where Dopamine Monoamine is mentioned: [Pg.610]    [Pg.38]    [Pg.491]    [Pg.491]    [Pg.491]    [Pg.493]    [Pg.495]    [Pg.638]    [Pg.610]    [Pg.38]    [Pg.491]    [Pg.491]    [Pg.491]    [Pg.493]    [Pg.495]    [Pg.638]    [Pg.228]    [Pg.465]    [Pg.469]    [Pg.43]    [Pg.112]    [Pg.163]    [Pg.166]    [Pg.211]    [Pg.438]    [Pg.439]    [Pg.443]    [Pg.561]    [Pg.764]    [Pg.788]    [Pg.1170]    [Pg.1173]    [Pg.205]   


SEARCH



Dopamine Monoamine oxidase inhibitors

Dopamine monoamine transporters

Dopamine transporter monoamine transporters

Monoamine neurotransmitters dopamine

Monoamine oxidase dopamine

Monoamine oxidase effect on dopamine

Monoamine oxidase with dopamine

© 2024 chempedia.info