Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Noradrenaline neurotransmitter

There has been a clear military interest in manipulation of the noradrenaline neurotransmitter system in relation to the arousal level of the central nervous system for some time.8 That interest apparently continues one recent report suggesting that drugs affecting the system were appropriate for immediate consideration as a non-lethal technique. 9... [Pg.93]

In 1966, the name was proposed (5) for receptors blocked by the at that time known antihistamines. It was also speculated that the other actions of histamine were likely to be mediated by other histamine receptors. The existence of the H2 receptor was accepted in 1972 (6) and the receptor was recognized in rat brain in 1983 (7). receptors in the brain appear to be involved in the feedback control of both histamine synthesis and release, whereas release of various other neurotransmitters, eg, serotinin (5-HT), dopamine, noradrenaline, and acetylcholine, is also modulated (8) (see Neuroregulators). [Pg.135]

Other agents are also used for the treatment of manic-depressive disorders based on preliminary clinical results (177). The antiepileptic carbamazepine [298-46-4] has been reported in some clinical studies to be therapeutically beneficial in mild-to-moderate manic depression. Carbamazepine treatment is used especially in bipolar patients intolerant to lithium or nonresponders. A majority of Hthium-resistant, rapidly cycling manic-depressive patients were reported in one study to improve on carbamazepine (178). Carbamazepine blocks noradrenaline reuptake and inhibits noradrenaline exocytosis. The main adverse events are those found commonly with antiepileptics, ie, vigilance problems, nystagmus, ataxia, and anemia, in addition to nausea, diarrhea, or constipation. Carbamazepine can be used in combination with lithium. Several clinical studies report that the calcium channel blocker verapamil [52-53-9] registered for angina pectoris and supraventricular arrhythmias, may also be effective in the treatment of acute mania. Its use as a mood stabilizer may be unrelated to its calcium-blocking properties. Verapamil also decreases the activity of several neurotransmitters. Severe manic depression is often treated with antipsychotics or benzodiazepine anxiolytics. [Pg.233]

L-Tyrosine metabohsm and catecholamine biosynthesis occur largely in the brain, central nervous tissue, and endocrine system, which have large pools of L-ascorbic acid (128). Catecholamine, a neurotransmitter, is the precursor in the formation of dopamine, which is converted to noradrenaline and adrenaline. The precise role of ascorbic acid has not been completely understood. Ascorbic acid has important biochemical functions with various hydroxylase enzymes in steroid, dmg, andhpid metabohsm. The cytochrome P-450 oxidase catalyzes the conversion of cholesterol to bUe acids and the detoxification process of aromatic dmgs and other xenobiotics, eg, carcinogens, poUutants, and pesticides, in the body (129). The effects of L-ascorbic acid on histamine metabohsm related to scurvy and anaphylactic shock have been investigated (130). Another ceUular reaction involving ascorbic acid is the conversion of folate to tetrahydrofolate. Ascorbic acid has many biochemical functions which affect the immune system of the body (131). [Pg.21]

FIGURE 27.5 Tyrosine is the biosynthetic precursor to a number of neurotransmitters. Each transformation is enzyme-catalyzed. Hydroxy-lation of the aromatic ring of tyrosine converts it to 3,4-dihydroxy phenylalanine (L-dopa), decarboxylation of which gives dopamine. Hy-droxylation of the benzylic carbon of dopamine converts it to norepinephrine (noradrenaline), and methy-lation of the amino group of norepinephrine yields epinephrine (adrenaline). [Pg.1126]

Adrenergic. Relating to epinephrine (adrenaline) or norepinephrine (noradrenaline). Commonly used to describe neurons that utilize norepinephrine as a neurotransmitter and the drugs that interact with these neurons. [Pg.448]

The adrenergic system is an essential regulator that increases cardiovascular and metabolic capacity during situations ofstress, exercise, and disease. Nerve cells in the central and peripheral nervous system synthesize and secrete the neurotransmitters noradrenaline and adrenaline. In the peripheral nervous system, noradrenaline and adrenaline are released from two different sites noradrenaline is the principal neurotransmitter of sympathetic neurons that innervate many organs and tissues. In contrast, adrenaline, and to a lesser degree noradrenaline, is produced and secreted from the adrenal gland into the circulation (Fig. 1). Thus, the actions of noradrenaline are mostly restricted to the sites of release from sympathetic nerves, whereas adrenaline acts as a hormone to stimulate many different cells via the blood stream. [Pg.42]

Together with dopamine, adrenaline and noradrenaline belong to the endogenous catecholamines that are synthesized from the precursor amino acid tyrosine (Fig. 1). In the first biosynthetic step, tyrosine hydroxylase generates l-DOPA which is further converted to dopamine by the aromatic L-amino acid decarboxylase ( Dopa decarboxylase). Dopamine is transported from the cytosol into synaptic vesicles by a vesicular monoamine transporter. In sympathetic nerves, vesicular dopamine (3-hydroxylase generates the neurotransmitter noradrenaline. In chromaffin cells of the adrenal medulla, approximately 80% of the noradrenaline is further converted into adrenaline by the enzyme phenylethanolamine-A-methyltransferase. [Pg.42]

Hi-receptors in the adrenal medulla stimulates the release of the two catecholamines noradrenaline and adrenaline as well as enkephalins. In the heart, histamine produces negative inotropic effects via Hr receptor stimulation, but these are normally masked by the positive effects of H2-receptor stimulation on heart rate and force of contraction. Histamine Hi-receptors are widely distributed in human brain and highest densities are found in neocortex, hippocampus, nucleus accumbens, thalamus and posterior hypothalamus where they predominantly excite neuronal activity. Histamine Hrreceptor stimulation can also activate peripheral sensory nerve endings leading to itching and a surrounding vasodilatation ( flare ) due to an axonal reflex and the consequent release of peptide neurotransmitters from collateral nerve endings. [Pg.589]

Ubiquitous mitochondrial monoamine oxidase [monoamine oxygen oxidoreductase (deaminating) (flavin-containing) EC 1.4.3.4 MAO] exists in two forms, namely type A and type B [ monoamine oxidase (MAO) A and B]. They are responsible for oxidative deamination of primary, secondary, and tertiary amines, including neurotransmitters, adrenaline, noradrenaline, dopamine (DA), and serotonin and vasoactive amines, such as tyramine and phenylethylamine. Their nonselec-tive and selective inhibitors ( selective MAO-A and -B inhibitors) are employed for the treatment of depressive illness and Parkinson s disease (PD). [Pg.783]

Acute treatment with nonselective MAO inhibitors (iproniazid, tranylcypromine, phenelzine), as a consequence of inhibiting both forms of the enzyme, increase, brain levels of all monoamines (phenylethylamine, tryptamine, methylhistamine aminergic neurotransmitters (dopamine, noradr enaline, adrenaline and serotonin). By contrast MAO-A inhibitors (clorgyline) increase serotonin and noradrenaline, while MAO-B inhibitors (selegiline, rasagiline) increase brain levels... [Pg.784]

The neuropeptides are peptides acting as neurotransmitters. Some form families such as the tachykinin family with substance P, neurokinin A and neurokinin B, which consist of 11 or 12 amino acids and possess the common carboxy-terminal sequence Phe-X-Gly-Leu-Met-CONH2. Substance P is a transmitter of primary afferent nociceptive neurones. The opioid peptide family is characterized by the C-terminal sequence Tyr-Gly-Gly-Phe-X. Its numerous members are transmitters in many brain neurones. Neuropeptide Y (NPY), with 36 amino acids, is a transmitter (with noradrenaline and ATP) of postganglionic sympathetic neurones. [Pg.831]

The transporters for 5HT, noradrenaline and dopamine, biogenic monoamines, are genetically related, exist as single isoforms and are expressed on the surface of nerve cells, which use monoamines as (or convert them into) their cognate neurotransmitter. The single-isoform monoamine transporters fulfil all three fundamental functions (reuptake, limiting synaptic transmission, and control of the extracellular neurotransmitter concentration). Inactivation of DAT, NET, or SERT results in an increased extracellular lifetime and level of monoamine neurotransmitter, but decreased intracellular storage and evoked release (Fig. 3). [Pg.839]

Noradrenaline transporters (NAT) are localized in the presynaptic plasma membrane of adrenergic nerve terminals. They belong to a family of proteins with 12 putative transmembrane proteins which are responsible for recycling of released neurotransmitters (noradrena-line/adrenaline, dopamine, serotonin, amino acid transmitters) back into the presynaptic nerve ending. Noradrenaline transporters can be blocked by a number of different antidepressant drags, including tricyclic antidepressants (e.g. desipramine) and selective noradrenaline reuptake inhibitors (e.g. reboxetine). [Pg.883]

After an overview of neurotransmitter systems and function and a consideration of which substances can be classified as neurotransmitters, section A deals with their release, effects on neuronal excitability and receptor interaction. The synaptic physiology and pharmacology and possible brain function of each neurotransmitter is then covered in some detail (section B). Special attention is given to acetylcholine, glutamate, GABA, noradrenaline, dopamine, 5-hydroxytryptamine and the peptides but the purines, histamine, steroids and nitric oxide are not forgotten and there is a brief overview of appropriate basic pharmacology. [Pg.1]

Even more sophisticated control of neurotransmitter release is suggested by the possibility of heteroceptors . These receptors are thought to be located on the terminals of, and to modulate transmitter release from, one type of neuron, but are activated by transmitter released from a different type of neuron (Laduron 1985). For example, noradrenaline has been proposed to modulate release of a wide range of transmitters (e.g. dopamine, 5-HT and glutamate) through activation of a2-heteroceptors on the terminals of each of these different types of neuron. However, one factor that should be borne in mind is that most of the evidence for heteroceptors comes from studies of... [Pg.98]

Dopamine (3 4 dihydroxyphenylethylamine), like noradrenaline and adrenaline, is a eateeholamine and in addition to its independent neurotransmitter role in the CNS it is a preeursor to noradrenaline (NA) in all central and peripheral noradrenegic neurons. [Pg.137]

Noradrenaline release might also be modulated by receptors on noradrenergic nerve terminals that are activated by other neurotransmitters ( heteroceptors ). Unfortunately, most studies of this type of modulation have been carried out in tissue slices and... [Pg.173]

All these animal models express behavioural deficits that are paralleled by some abnormality in noradrenaline and/or 5-HT function but it is unlikely that the monoamines are the only neurotransmitters to influence these complex behaviours. Nevertheless, the behavioural deficits all respond, with varying degrees of specificity, to established antidepressants and central monoamines appear to have a crucial role in the therapeutic effects of these drugs. For a more detailed review of this subject see Stanford (1995). [Pg.431]

Figure 20.1 Schematic diagram illustrating how antidepressants increase the concentration of extraneuronal neurotransmitter (noradrenaline and/or 5-HT). In the absence of drug (b), monoamine oxidase on the outer membrane of mitochondria metabolises cytoplasmic neurotransmitter and limits its concentration. Also, transmitter released by exocytosis is sequestered from the extracellular space by the membrane-bound transporters which limit the concentration of extraneuronal transmitter. In the presence of a MAO inhibitor (a), the concentration of cytoplasmic transmitter increases, causing a secondary increase in the vesicular pool of transmitter (illustrated by the increase in the size of the vesicle core). As a consequence, exocytotic release of transmitter is increased. Blocking the inhibitory presynaptic autoreceptors would also increase transmitter release, as shown by the absence of this receptor in the figure. In the presence of a neuronal reuptake inhibitor (c), the membrane-bound transporter is inactivated and the clearance of transmitter from the synapse is diminished... Figure 20.1 Schematic diagram illustrating how antidepressants increase the concentration of extraneuronal neurotransmitter (noradrenaline and/or 5-HT). In the absence of drug (b), monoamine oxidase on the outer membrane of mitochondria metabolises cytoplasmic neurotransmitter and limits its concentration. Also, transmitter released by exocytosis is sequestered from the extracellular space by the membrane-bound transporters which limit the concentration of extraneuronal transmitter. In the presence of a MAO inhibitor (a), the concentration of cytoplasmic transmitter increases, causing a secondary increase in the vesicular pool of transmitter (illustrated by the increase in the size of the vesicle core). As a consequence, exocytotic release of transmitter is increased. Blocking the inhibitory presynaptic autoreceptors would also increase transmitter release, as shown by the absence of this receptor in the figure. In the presence of a neuronal reuptake inhibitor (c), the membrane-bound transporter is inactivated and the clearance of transmitter from the synapse is diminished...
It is important to emphasise that a lesion of the reticular system disrupts a number of afferent inputs to the cortex. Particularly important in this respect are the mono-aminergic (especially noradrenaline, 5-HT and histamine) and cholinergic pathways. When the ascending inputs from these neurons are destroyed, sleep is passive and not at all like natural sleep which, as detailed above, has distinct phases and depends on brainstem influences on cortical function. How these different neurotransmitters might influence sleep and arousal will be considered next. [Pg.485]

Some arousal-related neurotransmitters, including noradrenaline, serotonin, and acetylcholine, feed back to inhibit POA sleep-active neurons. This aspect of the system has been reviewed previously (McGinty Szymusiak, 2000 Saper et al., 2001). Therefore, once sleep-active neurons are activated, arousal-related neurons are inhibited, and inhibitory control of sleep-active neurons by arousal systems is reduced. In this way, sleep onset is facilitated. That is, the mutually inhibitory systems can switch more quickly from wake to sleep, and back. These mutually inhibitory interactions also promote stability of both waking and sleep. [Pg.14]


See other pages where Noradrenaline neurotransmitter is mentioned: [Pg.99]    [Pg.99]    [Pg.228]    [Pg.237]    [Pg.42]    [Pg.112]    [Pg.113]    [Pg.590]    [Pg.784]    [Pg.786]    [Pg.872]    [Pg.928]    [Pg.1170]    [Pg.1173]    [Pg.1184]    [Pg.98]    [Pg.141]    [Pg.38]    [Pg.42]    [Pg.45]    [Pg.84]    [Pg.100]    [Pg.168]    [Pg.180]    [Pg.202]    [Pg.255]    [Pg.490]    [Pg.497]    [Pg.182]    [Pg.17]   
See also in sourсe #XX -- [ Pg.254 , Pg.255 ]




SEARCH



© 2024 chempedia.info