Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distillation product stream

We again consider the distillation unit introduced in Example 1, updated with temperature information for each of the streams, including some that were previously considered to be internal to the system box. The temperatures have been estimated using a physical property estimation system. There are a number of such computer-based tools and most simulation software systems will include property estimation methods. Figure 3 shows these temperatures as well as the results obtained in the mass balance step above. As more streams are included in this diagram, we have new unknowns related to flow rates. Specifically, we now have the vapour stream, V, from the top of the column to the condenser and the liquid reflux stream, L, from the condenser back into the column. The relationship between the liquid reflux stream back into the column and the actual distillate product stream (D) is given by the reflux ratio ... [Pg.16]

One thousand kilograms per hour of a mixture containing equal parts by mass of methanol and water is distilled. Product streams leave the top and the bottom of the distillation column. The flow rate of the bottom stream is measured and found to be 673 kg/h, and the overhead stream is analyzed and found to contain 96.0 wt% methanol. [Pg.159]

The distillation column used in this study is designed to separate a binary mixture of methanol and water, which enters as a feed stream with flow rate F oi and composition Xp between the rectifying and the stripping section, obtaining both a distillate product stream D oi with composition Ad and a bottom product stream 5vo/ with composition Ab. The column consists of 40 bubble cap trays. The overhead vapor is totally condensed in a water cooled condenser (tray 41) which is open at atmospheric pressure. The process inputs that are available for control purposes are the heat input to the boiler Q and the reflux flow rate L oi. Liquid heights in the column bottom and the receiver drum (tray 1) dynamics are not considered for control since flow dynamics are significantly faster than composition dynamics and pressure control is not necessary since the condenser is opened to atmospheric pressure. [Pg.466]

It is worth pointing out that there are no analogous material balance constraints for the bottoms and distillate product streams, because these constraints will always be met if a positive reflux value is chosen in CSi. Material balance then dictates that the constraint in CSs is also met through Equation 7.20. [Pg.231]

Distillation columns frequently produce both vapor and liquid distillate product streams from the reflux drum when the feed stream contains small amounts of light components... [Pg.209]

Figures 12.13 and 12.14 give responses for feed flowrate and feed composition disturbances. Stable regulatory control is shown with product purities held close to their specifications for all of these large disturbances. Figure 12.13 gives the responses of the system for step changes in the setpoint of the feed flow controller at 0.2 h. The solid lines are for a 10% increase, the dashed lines are for a 20% increase, and the dotted lines are for a 20% decrease. Increasing the feed results in increases in both distillate product streams, as expected. The two temperatures in the extractive column are held at their setpoint values after a short transient period, as is the average temperature in the solvent recovery column. The purities of the two products are held quite close to their desired values. The largest offset in the acetone product purity occurs for the 20% decrease in feed flowrate where it drops to 99.4 mol%. The system comes to a new steady state in less than 2 h. Figures 12.13 and 12.14 give responses for feed flowrate and feed composition disturbances. Stable regulatory control is shown with product purities held close to their specifications for all of these large disturbances. Figure 12.13 gives the responses of the system for step changes in the setpoint of the feed flow controller at 0.2 h. The solid lines are for a 10% increase, the dashed lines are for a 20% increase, and the dotted lines are for a 20% decrease. Increasing the feed results in increases in both distillate product streams, as expected. The two temperatures in the extractive column are held at their setpoint values after a short transient period, as is the average temperature in the solvent recovery column. The purities of the two products are held quite close to their desired values. The largest offset in the acetone product purity occurs for the 20% decrease in feed flowrate where it drops to 99.4 mol%. The system comes to a new steady state in less than 2 h.
The dominant heating and cooling duties associated with a distillation column are the reboiler and condenser duties. In general, however, there will be other duties associated with heating and cooling of feed and product streams. These sensible heat duties usually will be small in comparison with the latent heat changes in reboilers and condensers. [Pg.341]

Fig. 42. Integrated distillation/pervaporation plant for ethanol recovery from fermentors. The distillation columns concentrate the ethanol—water mixture from 5 to 80%. The pervaporation membrane produces a 99.5% ethanol product stream and a 40—50% ethanol stream that is sent back to the distillation... Fig. 42. Integrated distillation/pervaporation plant for ethanol recovery from fermentors. The distillation columns concentrate the ethanol—water mixture from 5 to 80%. The pervaporation membrane produces a 99.5% ethanol product stream and a 40—50% ethanol stream that is sent back to the distillation...
Solvents. Petroleum naphtha is a generic term appHed to refined, pardy refined, or unrefined petroleum products. Naphthas are prepared by any of several methods, including fractionation of distillates or even cmde petroleum, solvent extraction, hydrocracking of distillates, polymerization of unsaturated (olefinic) compounds, and alkylation processes. Naphtha can also be a combination of product streams from more than one of these processes. [Pg.210]

An enrichment is defined as a separation process that results in the increase in concentration of one or mote species in one product stream and the depletion of the same species in the other product stream. Neither high purity not high recovery of any components is achieved. Gas enrichment can be accompHshed with a wide variety of separation methods including, for example, physical absorption, molecular sieve adsorption, equiHbrium adsorption, cryogenic distillation, condensation, and membrane permeation. [Pg.457]

A sharp separation results in two high purity, high recovery product streams. No restrictions ate placed on the mole fractions of the components to be separated. A separation is considered to be sharp if the ratio of flow rates of a key component in the two products is >10. The separation methods that can potentially obtain a sharp separation in a single step ate physical absorption, molecular sieve adsorption, equiHbrium adsorption, and cryogenic distillation. Chemical absorption is often used to achieve sharp separations, but is generally limited to situations in which the components to be removed ate present in low concentrations. [Pg.457]

The fatty acids that emerge from the top of the column contain entrained water, partially hydroly2ed fat, and the Zn—soap catalyst. This product stream is passed into a vacuum dryer stage where the water is removed through vapori2ation and the fatty acid cooled as a result of this vapori2ation process. The dried product stream is then passed to a distillation system. [Pg.155]

Processes involving oxygen and nitrogen oxides as catalysts have been operated commercially using either vapor- or Hquid-phase reactors. The vapor-phase reactors require particularly close control because of the wide explosive limit of dimethyl sulfide in oxygen (1—83.5 vol %) plants in operation use Hquid-phase reactions. Figure 2 is a schematic diagram for the Hquid-phase process. The product stream from the reactor is neutralized with aqueous caustic and is vacuum-evaporated, and the DMSO is dried in a distillation column to obtain the product. [Pg.111]

Unreacted EDC recovered from the pyrolysis product stream contains a variety of cracking by-products. A number of these, eg, trichloroethylene, chloroprene, and benzene, are not easily removed by simple distillation and require additional treatment (78). Chloroprene can build up in the light ends... [Pg.418]

Future Methods. A by-product stream containing 60—80% PEA can be obtained from the catalytic air oxidation of ethylbenzene [100-41-4] (100). Perfumery-grade material can be isolated from this stream by complexing the PEA with a metal haUde (such as CaCl2), separation of the adduct, and thermal decomposition followed by distillation. [Pg.62]

The SRC-II process, shown in Figure 2, was developed in order to minimise the production of soHds from the SRC-I coal processing scheme. The principal variation of the SRC-II process relative to SRC-I was incorporation of a recycle loop for the heavy ends of the primary Hquefaction process. It was quickly realized that minerals which were concentrated in this recycle stream served as heterogeneous hydrogenation catalysts which aided in the distillate production reactions. In particular, pyrrhotites, non stoichiometric iron sulfides, produced by reduction of iron pyrite were identified as being... [Pg.281]

The hquid product streams are fed to a distillation system to remove the light impurities and to recover the ethanol as a 95% volume ethanol—water a2eotrope. To produce anhydrous ethanol, the ethanol—water a2eotrope is fed to a dehydration system. [Pg.407]

Distillation columns have four or more closed loops—increasing with the number of product streams and their specifications—all of which interact with each other to some extent. Because of this interaction, there are many possible ways to pair manipulated and controlled variables through controllers and other mathematical functions with widely differing degrees of effectiveness. Columns also differ from each other, so that no single rule of configuring control loops can be apphed successfully to all. The following rules apply to the most common separations. [Pg.747]

The column internals are housed within a vertical shell, and together with the condenser and reboiler, constitute a distillation column. A schematic of a typical distillation unit with a single feed and two product streams is shown in Figure 1. [Pg.165]

Furthermore, for quality and operability objectives the plant does not wish to recycle the AN product stream (top of distillation column), the feed to the distillation column and the feed to the decanter. [Pg.88]

The reason for this is simple. If the reaction chemistry is not "clean" (meaning selective), then the desired species must be separated from the matrix of products that are formed and that is costly. In fact the major cost in most chemical operations is the cost of separating the raw product mixture in a way that provides the desired product at requisite purity. The cost of this step scales with the complexity of the "un-mixing" process and the amount of energy that must be added to make this happen. For example, the heating and cooling costs that go with distillation are high and are to be minimized wherever possible. The complexity of the separation is a function of the number and type of species in the product stream, which is a direct result of what happened within the reactor. Thus the separations are costly and they depend upon the reaction chemistry and how it proceeds in the reactor. All of the complexity is summarized in the kinetics. [Pg.297]

Distilling a crude oil starts by preheating the feed by exchange with the hot product streams. The feed is further heated to about 320°C as it passes through the heater pipe (pipe still heater). [Pg.50]

Originally cresylic acid was obtained from caustic waste streams that resulted from treating light distillates with caustic solutions to reduce H2S and mercaptans. Currently, most of these streams are hydrodesulfurized, and the product streams practically do not contain phenolic compounds. [Pg.131]


See other pages where Distillation product stream is mentioned: [Pg.185]    [Pg.21]    [Pg.120]    [Pg.249]    [Pg.720]    [Pg.185]    [Pg.21]    [Pg.120]    [Pg.249]    [Pg.720]    [Pg.110]    [Pg.123]    [Pg.283]    [Pg.447]    [Pg.457]    [Pg.260]    [Pg.125]    [Pg.155]    [Pg.336]    [Pg.361]    [Pg.190]    [Pg.198]    [Pg.92]    [Pg.94]    [Pg.165]    [Pg.217]    [Pg.334]    [Pg.76]    [Pg.112]    [Pg.20]    [Pg.252]    [Pg.68]   
See also in sourсe #XX -- [ Pg.120 ]




SEARCH



Distillation Production

Product distillations

© 2024 chempedia.info