Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dispersion packed column

Pulsed Columns. The efficiency of sieve-plate or packed columns is increased by the appHcation of sinusoidal pulsation to the contents of the column. The weU-distributed turbulence promotes dispersion and mass transfer while tending to reduce axial dispersion in comparison with the unpulsed column. This leads to a substantial reduction in HETS or HTU values. [Pg.75]

The Sherwood number, Sh, is estimated from Table 16-9, and the dispersion parameters Yi and Jo ffom Table 16-10 for well-packed columns. Typical values are a 1-4 and b 0.5-1. Since HETP -2HTU, Fig. 16-13 can also be used for approximate calculations. [Pg.1535]

Liquid Dispersion Spray columns are used with slurries or when the reaction product is a solid. The absorption of SO9 by a hme slurry is an example. In the treatment of phosphate rock with sulfuric acid, offgases contain HF and SiF4. In a spray column with water, solid particles of fluorosilic acid are formed but do not harm the spray operation. The coefficient /cl in spray columns is about the same as in packed columns, but the spray interfacial area is much lower. Considerable backmixing of the gas also takes place, which helps to make the spray volumetri-caUy inefficient. Deentrainment at the outlet usually is needed. [Pg.2115]

FIG. 23-38 Efficiency and capacity range of small-diameter extractors, 50 to 150 mm diameter. Acetone extracted from water with toluene as the disperse phase, V /V = 1.5. Code AC = agitated cell PPC = pulsed packed column PST = pulsed sieve tray RDC = rotating disk contactor PC = packed column MS = mixer-settler ST = sieve tray. (Stichlmair, Chem. Ing. Tech. 52(3), 253-255 [1980]). [Pg.2118]

The silica dispersion showed the smallest retention volume. It should be noted, however, that the authors reported that the silica dispersion required sonicating for 5 hours before the silica was sufficiently dispersed to be used as "pseudo-solute". The retention volume of the silica dispersion gave the value of the kinetic dead volume, /.e., the volume of the moving portion of the mobile phase. It is clear that the difference between the retention volume of sodium nitroprusside and that of the silica dispersion is very small, and so the sodium nitroprusside can be used to measure the kinetic dead volume of a packed column. From such data, the mean kinetic linear velocity and the kinetic capacity ratio can be calculated for use with the Van Deemter equation [12] or the Golay equation [13]. [Pg.41]

The dispersion of a solute band in a packed column was originally treated comprehensively by Van Deemter et al. [4] who postulated that there were four first-order effect, spreading processes that were responsible for peak dispersion. These the authors designated as multi-path dispersion, longitudinal diffusion, resistance to mass transfer in the mobile phase and resistance to mass transfer in the stationary phase. Van Deemter derived an expression for the variance contribution of each dispersion process to the overall variance per unit length of the column. Consequently, as the individual dispersion processes can be assumed to be random and non-interacting, the total variance per unit length of the column was obtained from a sum of the individual variance contributions. [Pg.245]

Giddings [2] estimated that, for a well-packed column, (y) takes a value of about 0.6. Equation (11) accurately describes longitudinal dispersion in GC capillary columns and equation (12) accurately describes longitudinal dispersion in GC and LC packed columns. Experimental support for these equations will be given in a later chapter. [Pg.248]

In a packed column, however, the situation is quite different and more complicated. Only point contact is made between particles and, consequently, the film of stationary phase is largely discontinuous. It follows that, as solute transfer between particles can only take place at the points of contact, diffusion will be severely impeded. In practice the throttling effect of the limited contact area between particles renders the dispersion due to diffusion in the stationary phase insignificant. This is true even in packed LC columns where the solute diffusivity in both phases are of the same order of magnitude. The negligible effect of dispersion due to diffusion in the stationary phase is also supported by experimental evidence which will be included later in the chapter. [Pg.250]

In summary, equation (13) accurately describes longitudinal dispersion in the stationary phase of capillary columns, but it will only be significant compared with other dispersion mechanisms in LC capillary columns, should they ever become generally practical and available. Dispersion due to longitudinal diffusion in the stationary phase in packed columns is not significant due to the discontinuous nature of the stationary phase and, compared to other dispersion processes, can be ignored in practice. [Pg.250]

The Golay equation [9] for open tubular columns has been discussed in the previous chapter. It differs from the other equations by the absence of a multi-path term that can only be present in packed columns. The Golay equation can also be used to examine the dispersion that takes place in connecting tubes, detector cells and other sources of extra-column dispersion. Extra-column dispersion will be considered in another chapter but the use of the Golay equation for this purpose will be briefly considered here. Reiterating the Golay equation from the previous chapter. [Pg.266]

It is seen that, for GC packed columns operated under the conditions assumed, the two factors contributing to dispersion by resistance to mass transfer are of the same order of magnitude. Consequently, equations (20) and (21) cannot be simplified and must be used in their existing form for all optimization procedures using packed GC columns. If the conditions differ significantly from those assumed, then by using the same procedure the possibility of modifying expressions (20) and (21) can be reexamined. [Pg.279]

Equations (2) and (4) allow the permissible extra-column dispersion to be calculated for a range of capillary and packed columns. To allow comparison, data was included for a GC column, in addition to LC columns. The results are shown in Table 1. [Pg.289]

Unfortunately, any equation that does provide a good fit to a series of experimentally determined data sets, and meets the requirement that all constants were positive and real, would still not uniquely identify the correct expression for peak dispersion. After a satisfactory fit of the experimental data to a particular equation is obtained, the constants, (A), (B), (C) etc. must then be replaced by the explicit expressions derived from the respective theory. These expressions will contain constants that define certain physical properties of the solute, solvent and stationary phase. Consequently, if the pertinent physical properties of solute, solvent and stationary phase are varied in a systematic manner to change the magnitude of the constants (A), (B), (C) etc., the changes as predicted by the equation under examination must then be compared with those obtained experimentally. The equation that satisfies both requirements can then be considered to be the true equation that describes band dispersion in a packed column. [Pg.316]

Katz et fl/.[l] searched the literature for data that could be used to identify the pertinent dispersion equation for a packed column in liquid chromatography. As a result of the search, no data was found that had been measured with the necessary accuracy and precision and under the sufficiently diverse solute/mobile phase conditions required to meet the second criteria given above. It became obvious that a... [Pg.316]

The Relationship between Dispersion in a Packed Column to Solute Molecular Weight... [Pg.343]

In a packed column the HETP depends on the particle diameter and is not related to the column radius. As a result, an expression for the optimum particle diameter is independently derived, and then the column radius determined from the extracolumn dispersion. This is not true for the open tubular column, as the HETP is determined by the column radius. It follows that a converse procedure must be employed. Firstly the optimum column radius is determined and then the maximum extra-column dispersion that the column can tolerate calculated. Thus, with open tubular columns, the chromatographic system, in particular the detector dispersion and the maximum sample volume, is dictated by the column design which, in turn, is governed by the nature of the separation. [Pg.392]

Gas-liquid contactors may be operated either by way of gas bubble dispersion into liquid or droplet dispersion in gas phase, while thin film reactors, i.e. packed columns and trickle beds are not suitable for solid formation due... [Pg.234]

Danckwerts et al. (D6, R4, R5) recently used the absorption of COz in carbonate-bicarbonate buffer solutions containing arsenate as a catalyst in the study of absorption in packed column. The C02 undergoes a pseudo first-order reaction and the reaction rate constant is well defined. Consequently this reaction could prove to be a useful method for determining mass-transfer rates and evaluating the reliability of analytical approaches proposed for the prediction of mass transfer with simultaneous chemical reaction in gas-liquid dispersions. [Pg.302]

Packed columns Continuous or trickle, piston flow Continuous, trickle, or dispersed piston flow... [Pg.401]


See other pages where Dispersion packed column is mentioned: [Pg.18]    [Pg.34]    [Pg.68]    [Pg.74]    [Pg.75]    [Pg.476]    [Pg.501]    [Pg.507]    [Pg.1352]    [Pg.1396]    [Pg.1426]    [Pg.1489]    [Pg.245]    [Pg.246]    [Pg.261]    [Pg.284]    [Pg.344]    [Pg.352]    [Pg.357]    [Pg.55]    [Pg.97]    [Pg.98]    [Pg.265]    [Pg.37]    [Pg.38]    [Pg.71]    [Pg.288]    [Pg.563]   


SEARCH



Dispersed Phase Hold-Up in Packed Columns Containing Random and Structured Packings

Dispersion packed

Packed columns

Packed columns, packing

The Relationship between Dispersion in a Packed Column to Solute Molecular Weight

© 2024 chempedia.info