Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Band dispersions

Recalling that a separation is achieved by moving the solute bands apart in the column and, at the same time, constraining their dispersion so that they are eluted discretely, it follows that the resolution of a pair of solutes is not successfully accomplished by merely selective retention. In addition, the column must be carefully designed to minimize solute band dispersion. Selective retention will be determined by the interactive nature of the two phases, but band dispersion is determined by the physical properties of the column and the manner in which it is constructed. It is, therefore, necessary to identify those properties that influence peak width and how they are related to other properties of the chromatographic system. This aspect of chromatography theory will be discussed in detail in Part 2 of this book. At this time, the theoretical development will be limited to obtaining a measure of the peak width, so that eventually the width can then be related both theoretically and experimentally to the pertinent column parameters. [Pg.179]

Rate Theory to describe the mechanism of band dispersion and which will be the major topic of Part 2 of this book. [Pg.182]

The cell does not contribute significantly to band dispersion. [Pg.220]

Unfortunately, any equation that does provide a good fit to a series of experimentally determined data sets, and meets the requirement that all constants were positive and real, would still not uniquely identify the correct expression for peak dispersion. After a satisfactory fit of the experimental data to a particular equation is obtained, the constants, (A), (B), (C) etc. must then be replaced by the explicit expressions derived from the respective theory. These expressions will contain constants that define certain physical properties of the solute, solvent and stationary phase. Consequently, if the pertinent physical properties of solute, solvent and stationary phase are varied in a systematic manner to change the magnitude of the constants (A), (B), (C) etc., the changes as predicted by the equation under examination must then be compared with those obtained experimentally. The equation that satisfies both requirements can then be considered to be the true equation that describes band dispersion in a packed column. [Pg.316]

This is an oversimplified treatment of the concentration effect that can occur on a thin layer plate when using mixed solvents. Nevertheless, despite the complex nature of the surface that is considered, the treatment is sufficiently representative to disclose that a concentration effect does, indeed, take place. The concentration effect arises from the frontal analysis of the mobile phase which not only provides unique and complex modes of solute interaction and, thus, enhanced selectivity, but also causes the solutes to be concentrated as they pass along the TLC plate. This concentration process will oppose the dilution that results from band dispersion and thus, provides greater sensitivity to the spots close to the solvent front. This concealed concentration process, often not recognized, is another property of TLC development that helps make it so practical and generally useful and often provides unexpected sensitivities. [Pg.446]

HETP of a TLC plate is taken as the ratio of the distance traveled by the spot to the plate efficiency. The same three processes cause spot dispersion in TLC as do cause band dispersion in GC and LC. Namely, they are multipath dispersion, longitudinal diffusion and resistance to mass transfer between the two phases. Due to the aforementioned solvent frontal analysis, however, neither the capacity ratio, the solute diffusivity or the solvent velocity are constant throughout the elution of the solute along the plate and thus the conventional dispersion equations used in GC and LC have no pertinence to the thin layer plate. [Pg.454]

At low rotation rates, less than the chemical shifts anisotropy, however, the powder spectra contained disturbing side bands dispersed among the isotropic chemical shifts. In order to discriminate between sidebands and isotropic resonances two spectra obtained at different spinning speeds were multiplied together or the differentiation was made by visual inspection. [Pg.11]

It follows that as the variance of the peak is inversely proportional to the number of theoretical plates in the column then the larger the number of theoretical plates, the more narrow the peak and the more efficiently the column has constrained the band dispersion. As a consequence the number of theoretical plates in a column has been given the term Column Efficiency and is used to describe its quality. [Pg.46]

At this point, it is important to stress the difference between separation and resolution. Although a pair of solutes may be separated they will only be resolved if the peaks are kept sufficiently narrow so that, having been moved apart (that is, separated), they are eluted discretely. Practically, this means that firstly there must be sufficient stationary phase in the column to move the peaks apart, and secondly, the column must be constructed so that the individual bands do not spread (disperse) to a greater extent than the phase system has separated them. It follows that the factors that determine peak dispersion must be identified and this requires an introduction to the Rate Theory. The Rate Theory will not be considered in detail as this subject has been treated extensively elsewhere (1), but the basic processes of band dispersion will be examined in order to understand... [Pg.93]

Consequently, some molecules, those taking the shorter paths, will move ahead of the average and some, those that take the longer paths, will lag behind (dl) thus causing band dispersion. [Pg.98]

To determine the band dispersion that results from a significant, but moderate, sample volume overload the summation of variances can be used. However, when the sample volume becomes excessive, the band dispersion that results becomes equivalent to the sample volume itself. In figure 10, two solutes are depicted that are eluted from a column under conditions of no overload. If the dispersion from the excessive sample volume just allows the peaks to touch at the base, the peak separation in milliliters of mobile phase passed through the column will be equivalent to the sample volume (Vi) plus half the base width of both peaks. It is assumed in figure 10 that the efficiency of each peak is the same and in most cases this will be true. If there is some significant difference, an average value of the efficiencies of the two peaks can be taken. [Pg.119]

The reactor can consist of a short packed tube or a length of coiled tube. Open tubes can give very serious band dispersion as already discussed and, if a tube is used for the reactor, it should be constructed of low-dispersion tubing. Low dispersion tubing will not only reduce band dispersion but will also produce highly efficient mixing and thus accelerate the reaction. [Pg.247]

Fig. 9.10 CASTER densities of states for LigZn2Ge3. Nonbonding electron density distribution over selected bunches of crystal orbitals in the valence-band dispersion (a) six orbitals between -2.4 and -0.7 eV, (b) four orbitals ranging from -3.3 to -1.9 eV. Fig. 9.10 CASTER densities of states for LigZn2Ge3. Nonbonding electron density distribution over selected bunches of crystal orbitals in the valence-band dispersion (a) six orbitals between -2.4 and -0.7 eV, (b) four orbitals ranging from -3.3 to -1.9 eV.
Moreover, it was shown that the presence of Hal Hal interactions between the partially oxidized molecules also contribute to the electronic delocalization. Indeed, the presence of non-zero atomic coefficients on the halogen atoms in the HOMO of EDT-TTF-Br2 or EDT-TTF-I2 [66], together with the short Hal Hal contacts, leads to a sizeable increase of the band dispersion and stabilizes a rare (V structure through the side-by-side arrangement of the inversion-centred dyads connected by Hal- Hal interactions. Both 13 salts are semiconductors with room temperature conductivities around... [Pg.204]

In solids, as in atoms and molecules, the spectral density (k, co) contains much more information than simply the band peak position, i.e. the band dispersion. The... [Pg.208]

Fig. 1. Comparison of amide V VCD for an identical sample of poly-L-lysine in D20 as measured on the UIC dispersive instrument (top) and on the ChirallRFT-VCD instrument (at Vanderbilt University, kindly made available by Prof. Prasad Polavarapu). Sample spectra were run at the same resolution for the same total time ( 1 h) in each case. The FTIR absorbance spectrum of the sample is shown below. VCD spectra are offset for sake of comparison. Each ideal baseline is indicated by a thin line, the scale providing a measure of amplitude. Noise can be estimated as the fluctuation in the baseline before and after the amide V, which indicates the S/N advantage of the single band dispersive measurement. Fig. 1. Comparison of amide V VCD for an identical sample of poly-L-lysine in D20 as measured on the UIC dispersive instrument (top) and on the ChirallRFT-VCD instrument (at Vanderbilt University, kindly made available by Prof. Prasad Polavarapu). Sample spectra were run at the same resolution for the same total time ( 1 h) in each case. The FTIR absorbance spectrum of the sample is shown below. VCD spectra are offset for sake of comparison. Each ideal baseline is indicated by a thin line, the scale providing a measure of amplitude. Noise can be estimated as the fluctuation in the baseline before and after the amide V, which indicates the S/N advantage of the single band dispersive measurement.
In a study on another manganese enzyme, glutathione transferase, the Hoffmann group has proposed Q-band dispersion EPR at the unusually low temperature of 2 K as the optimal approach to collect data from Mn11 centers with D hv (Smoukov et al. 2002). This proposal would be practically limited by the fact that Q-band spectrometers running at 2 K can be counted on the fingers of one finger however, dispersion spectra are readily obtained in Q-band also at helium-flow temperatures (i.e., T>4.2K). [Pg.207]

Graphite possesses highly anisotropic layered crystal structure, which translates to a quasi-2D electronic structure with electronic bands dispersing linearly near Ep and forming point-like Fermi surfaces. Visible light induces... [Pg.35]

The theory of band structures belongs to the world of solid state physicists, who like to think in terms of collective properties, band dispersions, Brillouin zones and reciprocal space [9,10]. This is not the favorite language of a chemist, who prefers to think in terms of molecular orbitals and bonds. Hoffmann gives an excellent and highly instructive comparison of the physical and chemical pictures of bonding [6], In this appendix we try to use as much as possible the chemical language of molecular orbitals. Before talking about metals we recall a few concepts from molecular orbital theory. [Pg.300]

Important performance characteristics of UV/Vis detectors are sensitivity, linearity, and band dispersion. These are controlled by design of the optics and the flow cell—more specifically by spectral bandpass, stray light characteristics, and the volume and path length of the flow cell. [Pg.509]

An injector valve operates in two modes— the fixed-loop mode or the partial-loop mode. In the fixed-loop mode, a sample is overfilled into the loop at 2-4 times the loop volume and the entire loop content is injected. In the partial-loop fill mode, a variable sample aliquot, measured precisely by a syringe at <50% of the loop volume, is injected. Note that the sample slug is introduced into the end of the sample loop and is back flushed onto the column to minimize band dispersion by the sample loop (Figure 9). Due to the emphasis on productivity, manual injectors are seldom used in the pharmaceutical laboratory except for preparative applications. [Pg.59]


See other pages where Band dispersions is mentioned: [Pg.4]    [Pg.246]    [Pg.296]    [Pg.301]    [Pg.446]    [Pg.446]    [Pg.480]    [Pg.52]    [Pg.295]    [Pg.342]    [Pg.245]    [Pg.87]    [Pg.213]    [Pg.84]    [Pg.281]    [Pg.130]    [Pg.193]    [Pg.197]    [Pg.213]    [Pg.92]    [Pg.305]    [Pg.510]    [Pg.511]    [Pg.64]    [Pg.66]   
See also in sourсe #XX -- [ Pg.72 ]

See also in sourсe #XX -- [ Pg.233 ]

See also in sourсe #XX -- [ Pg.233 ]

See also in sourсe #XX -- [ Pg.302 ]

See also in sourсe #XX -- [ Pg.318 ]




SEARCH



Band dispersion structure

Band dispersion, electrophoresis

Band electron, dispersion

Band tails dispersive transport

Band theory dispersion

Bands PTFE dispersion

Chromatographic band dispersion

Coalescence dispersion band

Dispersive trapping in a band tail

Energy band dispersion

Extraction dispersion band, height

Flat band electron energy dispersion

Two-Component Band Profiles with the Equilibrium-Dispersive Model

© 2024 chempedia.info