Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Direct Dynamics mechanisms

For larger systems, various approximate schemes have been developed, called mixed methods as they treat parts of the system using different levels of theory. Of interest to us here are quantuin-seiniclassical methods, which use full quantum mechanics to treat the electrons, but use approximations based on trajectories in a classical phase space to describe the nuclear motion. The prefix quantum may be dropped, and we will talk of seiniclassical methods. There are a number of different approaches, but here we shall concentrate on the few that are suitable for direct dynamics molecular simulations. An overview of other methods is given in the introduction of [21]. [Pg.252]

In the full quantum mechanical picture, the evolving wavepackets are delocalized functions, representing the probability of finding the nuclei at a particular point in space. This representation is unsuitable for direct dynamics as it is necessary to know the potential surface over a region of space at each point in time. Fortunately, there are approximate formulations based on trajectories in phase space, which will be discussed below. These local representations, so-called as only a portion of the FES is examined at each point in time, have a classical flavor. The delocalized and nonlocal nature of the full solution of the Schtddinger equation should, however, be kept in mind. [Pg.257]

In conclusion, the different thermal histories imposed to PTEB have a minor effect on the /3 and y relaxations, while the a. transition is greatly dependent on the annealing of the samples, being considerably more intense and narrower for the specimen freshly quenched from the melt, which exhibits only a liquid crystalline order. The increase of the storage modulus produced by the aging process confirms the dynamic mechanical results obtained for PDEB [24], a polyester of the same series, as well as the micro-hardness increase [22] (a direct consequence of the modulus rise) with the aging time. [Pg.396]

Adsorption of rubber over the nanosilica particles alters the viscoelastic responses. Analysis of dynamic mechanical properties therefore provides a direct clue of the mbber-silica interaction. Figure 3.22 shows the variation in storage modulus (log scale) and tan 8 against temperature for ACM-silica, ENR-silica, and in situ acrylic copolymer and terpolymer-silica hybrid nanocomposites. [Pg.77]

The second channel, producing CO, was first observed by Seakins and Leone [64], who estimated 40% branching to this channel. Later measurements by Lockenberg et al. [65] and Preses et al. [66] concluded the branching to CO is 18%. Note that decomposition of formaldehyde formed in reaction (26a) is not a possible source of CO due to the large barrier for formaldehyde decomposition. Marcy et al. [67] recently combined time-resolved Lourier spectroscopy experiments with direct dynamics classical trajectory calculations to examine the mechanism of the CO product channel. They observed two pathways for CO formation, neither of which involve crossing a TS. [Pg.249]

For both statistical and dynamical pathway branching, trajectory calculations are an indispensable tool, providing qualitative insight into the mechanisms and quantitative predictions of the branching ratios. For systems beyond four or five atoms, direct dynamics calculations will continue to play the leading theoretical role. In any case, predictions of reaction mechanisms based on examinations of the potential energy surface and/or statistical calculations based on stationary point properties should be viewed with caution. [Pg.261]

Material properties at a critical point were believed to be independent of the structural details of the materials. Such universality has yet to be confirmed for gelation. In fact, experiments show that the dynamic mechanical properties of a polymer are intimately related to its structural characteristics and forming conditions. A direct relation between structure and relaxation behavior of critical gels is still unknown since their structure has yet evaded detailed investigation. Most structural information relies on extrapolation onto the LST. [Pg.172]

Master curves are important since they give directly the response to be expected at other times at that temperature. In addition, such curves are required to calculate the distribution of relaxation times as discussed earlier. Master curves can be made from stress relaxation data, dynamic mechanical data, or creep data (and, though less straightforwardly, from constant-strain-rate data and from dielectric response data). Figure 9 shows master curves for the compliance of poly(n. v-isoprene) of different molecular weights. The master curves were constructed from creep curves such as those shown in Figure 10 (32). The reference temperature 7, for the... [Pg.79]

An associated technique which links thermal properties with mechanical ones is dynamic mechanical analysis (DMA). In this, a bar of the sample is typically fixed into a frame by clamping at both ends. It is then oscillated by means of a ceramic shaft applied at the centre. The resonant frequency and the mechanical damping exhibited by the sample are sensitive measurements of the mechanical properties of a polymer which can be made over a wide range of temperatures. The effects of compositional changes and methods of preparation can be directly assessed. DMA is assuming a position of major importance in the study of the physico-chemical properties of polymers and composites. [Pg.495]

Electron irradiation causes chain scission and crosslinking in polymers. Both of these phenomena directly affect the glass transition temperature (Tg) of the materials. Thermomechanical (TMA) and dynamic-mechanical analysis (DMA) provide information about the Tg region and its changes due to radiation damage. Therefore, DMA and TMA were performed on all irradiated materials. [Pg.228]

Molecular mixing via dynamic mechanical spectroscopy. While electron microscopy yields the phase size, shape, etc., as delineated above, dynamic mechanical spectroscopy (DMS) yields the composition within each phase. The DMS measurements employed a Rheovibron direct reading viscoelastometer model DDV-II (manufactured by Toyo Measuring Instruments Co., Ltd., Tokyo, Japan). The measurements were taken over a temperature range from -120°C to 140°C using a frequency of 110 Hz and a heating rate of about 1°C/ min. Sample dimensions were about 0.03 x 0.15 x 2 cms. [Pg.414]

Dough Moulding Compound Dynamic Mechanical Thermal Analysis Direct Resin Injection and Venting Differential Scanning Calorimeter Differential Thermal Analysis Elongation at Break... [Pg.893]

On the other hand, Bhattacharya et al. have reported the plasticization effect of organically modified layered silicates on dynamic mechanical properties [13]. In this work, nanocomposites of SBR have been prepared using various nanofillers like modified and unmodified montmorillonite, SP, hectorite etc. It has been observed that the Tg shifts to lower temperature in all the nanocomposites, except for systems from hectorite and NA. This is due to the fact that clay layers form capillaries parallel to each other as they become oriented in a particular direction. Due to wall slippage of the unattached polymer through these capillaries, the Tg is lowered, which could be even more in the absence of organo-modifiers [13]. A similar type of plasticization effect is also noted in the case of the low... [Pg.41]


See other pages where Direct Dynamics mechanisms is mentioned: [Pg.119]    [Pg.119]    [Pg.251]    [Pg.272]    [Pg.306]    [Pg.179]    [Pg.199]    [Pg.60]    [Pg.63]    [Pg.66]    [Pg.148]    [Pg.367]    [Pg.576]    [Pg.228]    [Pg.243]    [Pg.251]    [Pg.333]    [Pg.99]    [Pg.151]    [Pg.331]    [Pg.504]    [Pg.356]    [Pg.377]    [Pg.411]    [Pg.243]    [Pg.276]    [Pg.306]    [Pg.357]    [Pg.254]    [Pg.69]    [Pg.945]    [Pg.199]    [Pg.532]    [Pg.194]    [Pg.80]    [Pg.427]    [Pg.56]   
See also in sourсe #XX -- [ Pg.5 , Pg.107 ]




SEARCH



Chemical direct dynamics trajectory mechanism

Direct dynamics

Direct mechanism

Direct molecular dynamics propagation mechanisms

Direct molecular dynamics, nuclear motion classical mechanics

Directing mechanism

Dynamic mechanisms

Dynamical mechanical

© 2024 chempedia.info