Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Direct molecular dynamics, nuclear motion classical mechanics

Discrete Fourier transform (DFT), non-adiabatic coupling, Longuet-Higgins phase-based treatment, two-dimensional two-surface system, scattering calculation, 153-155 Discrete variable representation (DVR) direct molecular dynamics, nuclear motion Schrodinger equation, 364-373 non-adiabatic coupling, quantum dressed classical mechanics, 177-183 formulation, 181-183... [Pg.75]

For larger systems, various approximate schemes have been developed, called mixed methods as they treat parts of the system using different levels of theory. Of interest to us here are quantuin-seiniclassical methods, which use full quantum mechanics to treat the electrons, but use approximations based on trajectories in a classical phase space to describe the nuclear motion. The prefix quantum may be dropped, and we will talk of seiniclassical methods. There are a number of different approaches, but here we shall concentrate on the few that are suitable for direct dynamics molecular simulations. An overview of other methods is given in the introduction of [21]. [Pg.252]

An alternative route is based on time-dependent approaches, where the standard statistical mechanics formalism relies on Fourier transform of the time correlation of vibrational operators [54—57]. These approaches can provide a complete description of the experimental spectrum, that is, the characterization of the real molecular motion consisting of many degrees of freedom activated at finite temperature, often strongly coupled and anharmonic in namre. However, computation of the exact quantum dynamics evolution of the nuclei on the ab initio potential surface is as prohibitive as the quantum/stationary-state approaches. In fact, even a semiclassical description of the time evolution of quanmm systems is usually computationally expensive. Therefore, time correlation methods for realistic systems are usually carried out by sampling of the nuclear motion in the classical phase space. In this context, summation over i in Eq. 11.1 is a classical ensemble average furthermore, the field unit vector e can be averaged over all directions of an isotropic fluid, leading to the well-known expression... [Pg.522]


See also in sourсe #XX -- [ Pg.177 , Pg.178 , Pg.179 , Pg.180 , Pg.181 , Pg.182 ]




SEARCH



Classical dynamics

Classical mechanical

Classical mechanics

Classical motion

Direct Dynamics mechanisms

Direct dynamics

Direct mechanism

Direct molecular dynamics

Direct molecular dynamics, nuclear motion

Directing mechanism

Direction motion

Dynamic mechanisms

Dynamic motion

Dynamical mechanical

Mechanical motion

Molecular dynamics classical mechanics

Molecular dynamics mechanisms

Molecular dynamics motion

Molecular motion

Nuclear dynamics

Nuclear mechanisms

Nuclear motion

© 2024 chempedia.info