Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reaction endo transition state

In the all carbon and hydrogen instance, the Alder-Ene reaction is considered to be concerted and is thermally allowed based on Woodward-Hoffman rules. Thus, the Alder-Ene reaction is proposed to be a six-electron process, like the Diels-Alder reaction, having transition states endo and exo) analogous to the Diels-Alder reaction. However, the Alder-Ene reaction is easily modulated by steric effects as secondary electronic stabilizing effects have yet to be clearly identified. For example, Berson reported c/5-2-butene reacted with maleic anhydride to provide about a 4 1 ratio of endo. exo adducts 5 6, while trans-l-hvAeae provided little selectivity at 43 57 ratio of 5 6. In the reaction of maleic anhydride with tra 5-2-butene, the e.xo-TS encounters a steric interaction that the endo-TS does not. Steric effects are... [Pg.2]

Under the usual conditions their ratio is kinetically controlled. Alder and Stein already discerned that there usually exists a preference for formation of the endo isomer (formulated as a tendency of maximum accumulation of unsaturation, the Alder-Stein rule). Indeed, there are only very few examples of Diels-Alder reactions where the exo isomer is the major product. The interactions underlying this behaviour have been subject of intensive research. Since the reactions leadirig to endo and exo product share the same initial state, the differences between the respective transition-state energies fully account for the observed selectivity. These differences are typically in the range of 10-15 kJ per mole. ... [Pg.6]

In summary, it seems that for most Diels-Alder reactions secondary orbital interactions afford a satisfactory rationalisation of the endo-exo selectivity. However, since the endo-exo ratio is determined by small differences in transition state energies, the influence of other interactions, most often steric in origin and different for each particular reaction, is likely to be felt. The compact character of the Diels-Alder activated complex (the activation volume of the retro Diels-Alder reaction is negative) will attenuate these eflfects. The ideas of Sustmann" and Mattay ° provide an attractive alternative explanation, but, at the moment, lack the proper experimental foundation. [Pg.7]

The regioselectivity benefits from the increased polarisation of the alkene moiety, reflected in the increased difference in the orbital coefficients on carbon 1 and 2. The increase in endo-exo selectivity is a result of an increased secondary orbital interaction that can be attributed to the increased orbital coefficient on the carbonyl carbon ". Also increased dipolar interactions, as a result of an increased polarisation, will contribute. Interestingly, Yamamoto has demonstrated that by usirg a very bulky catalyst the endo-pathway can be blocked and an excess of exo product can be obtained The increased di as tereo facial selectivity has been attributed to a more compact transition state for the catalysed reaction as a result of more efficient primary and secondary orbital interactions as well as conformational changes in the complexed dienophile" . Calculations show that, with the polarisation of the dienophile, the extent of asynchronicity in the activated complex increases . Some authors even report a zwitteriorric character of the activated complex of the Lewis-acid catalysed reaction " . Currently, Lewis-acid catalysis of Diels-Alder reactions is everyday practice in synthetic organic chemistry. [Pg.12]

Two approaches to convergent steroid syntheses are based on the thermal opening of benzocyclobutenes to the o-quinodimethane derivatives (see p. 80 W. Oppolzer, 1978 A) and their stereoselective intramolecular Diels-Alder cyclizations. T, Kametani (1977 B, 1978) obtained (+ )-estradiol in a six-step synthesis. The final Diels-Alder reaction occurred regio- and stereoselectively in almost quantitative yield, presumably because the exo transition state given below is highly favored over the endo state in which rings A and D would stcrically inter-... [Pg.280]

Another stereochemical feature of the Diels-Alder reaction is addressed by the Alder rule. The empirical observation is that if two isomeric adducts are possible, the one that has an unsaturated substituent(s) on the alkene oriented toward the newly formed cyclohexene double bond is the preferred product. The two alternative transition states are referred to as the endo and exo transition states ... [Pg.637]

In the 1,3-dipolar cycloaddition reactions of especially allyl anion type 1,3-dipoles with alkenes the formation of diastereomers has to be considered. In reactions of nitrones with a terminal alkene the nitrone can approach the alkene in an endo or an exo fashion giving rise to two different diastereomers. The nomenclature endo and exo is well known from the Diels-Alder reaction [3]. The endo isomer arises from the reaction in which the nitrogen atom of the dipole points in the same direction as the substituent of the alkene as outlined in Scheme 6.7. However, compared with the Diels-Alder reaction in which the endo transition state is stabilized by secondary 7t-orbital interactions, the actual interaction of the N-nitrone p -orbital with a vicinal p -orbital on the alkene, and thus the stabilization, is small [25]. The endojexo selectivity in the 1,3-dipolar cycloaddition reaction is therefore primarily controlled by the structure of the substrates or by a catalyst. [Pg.217]

The carbo-Diels-Alder reaction of acrolein with butadiene (Scheme 8.1) has been the standard reaction studied by theoretical calculations in order to investigate the influence of Lewis acids on the reaction course and several papers deal with this reaction. As an extension of an ab-initio study of the carbo-Diels-Alder reaction of butadiene with acrolein [5], Houk et al. investigated the transition-state structures and the origins of selectivity of Lewis acid-catalyzed carbo-Diels-Alder reactions [6]. Four different transition-state structures were considered (Fig. 8.4). Acrolein can add either endo (N) or exo (X), in either s-cis (C) or s-trans (T), and the Lewis acid coordinates to the carbonyl in the molecular plane, either syn or anti to the alkene. [Pg.305]

An important contribution for the endo selectivity in the carho-Diels-Alder reaction is the second-order orbital interaction [1], However, no bonds are formed in the product for this interaction. For the BF3-catalyzed reaction of acrolein with butadiene the overlap population between Cl and C6 is only 0.018 in the NC-transi-tion state [6], which is substantially smaller than the interaction between C3 and O (0.031). It is also notable that the C3-0 bond distance, 2.588 A, is significant shorter than the C1-C6 bond length (2.96 A), of which the latter is the one formed experimentally. The NC-transition-state structure can also lead to formation of vinyldihydropyran, i.e. a hetero-Diels-Alder reaction has proceeded. The potential energy surface at the NC-transition-state structure is extremely flat and structure NCA (Fig. 8.6) lies on the surface-separating reactants from product [6]. [Pg.307]

The endo exo selectivity for the Lewis acid-catalyzed carbo-Diels-Alder reaction of butadiene and acrolein deserves a special attention. The relative stability of endo over exo in the transition state accounts for the selectivity in the Diels-Alder cycloadduct. The Lewis acid induces a strong polarization of the dienophile FMOs and change their energies (see Fig. 8.2) giving rise to better interactions with the diene, and for this reason, the role of the possible secondary-orbital interaction must be considered. Another possibility is the [4 + 3] interaction suggested by Singleton... [Pg.308]

The hetero-Diels-Alder reaction of formaldehyde with 1,3-butadiene has been investigated with the formaldehyde oxygen atom coordinated to BH3 as a model for a Lewis acid [25 bj. Two transition states were located, one with BH3 exo, and one endo, relative to the diene. The former has the lowest energy and the calculated transition-state structure is much less symmetrical than for the uncatalyzed reaction shown in Fig. 8.12. The C-C bond length is calculated to be 0.42 A longer, while the C-0 bond length is 0.23 A shorter, compared to the uncatalyzed reac-... [Pg.315]

The Diels-Alder reaction of a diene with a substituted olefinic dienophile, e.g. 2, 4, 8, or 12, can go through two geometrically different transition states. With a diene that bears a substituent as a stereochemical marker (any substituent other than hydrogen deuterium will suffice ) at C-1 (e.g. 11a) or substituents at C-1 and C-4 (e.g. 5, 6, 7), the two different transition states lead to diastereomeric products, which differ in the relative configuration at the stereogenic centers connected by the newly formed cr-bonds. The respective transition state as well as the resulting product is termed with the prefix endo or exo. For example, when cyclopentadiene 5 is treated with acrylic acid 15, the cw fo-product 16 and the exo-product 17 can be formed. Formation of the cw fo-product 16 is kinetically favored by secondary orbital interactions (endo rule or Alder rule) Under kinetically controlled conditions it is the major product, and the thermodynamically more stable cxo-product 17 is formed in minor amounts only. [Pg.91]

An expedient and stereoselective synthesis of bicyclic ketone 30 exemplifies the utility and elegance of Corey s new catalytic system (see Scheme 8). Reaction of the (R)-tryptophan-derived oxazaboro-lidine 42 (5 mol %), 5-(benzyloxymethyl)-l,3-cyclopentadiene 26, and 2-bromoacrolein (43) at -78 °C in methylene chloride gives, after eight hours, diastereomeric adducts 44 in a yield of 83 % (95 5 exo.endo diastereoselectivity 96 4 enantioselectivity for the exo isomer). After reaction, the /V-tosyltryptophan can be recovered for reuse. The basic premise is that oxazaborolidine 42 induces the Diels-Alder reaction between intermediates 26 and 43 to proceed through a transition state geometry that maximizes attractive donor-acceptor interactions. Coordination of the dienophile at the face of boron that is cis to the 3-indolylmethyl substituent is thus favored.19d f Treatment of the 95 5 mixture of exo/endo diastereo-mers with 5 mol % aqueous AgNC>3 selectively converts the minor, but more reactive, endo aldehyde diastereomer into water-soluble... [Pg.80]

The chiral catalyst 142 achieves selectivities through a double effect of intramolecular hydrogen binding interaction and attractive tt-tt donor-acceptor interactions in the transition state by a hydroxy aromatic group [88]. The exceptional results of some Diels-Alder reactions of cyclopentadiene with substituted acroleins catalyzed by (R)-142 are reported in Table 4.21. High enantio- and exo selectivity were always obtained. The coordination of a proton to the 2-hydroxyphenyl group with an oxygen of the adjacent B-0 bond in the nonhelical transition state should play an important role both in the exo-endo approach and in the si-re face differentiation of dienophile. [Pg.185]

The Diels-Alder reaction of methyl methacrylate with cyclopentadiene was studied [72] with solutions from three different regions of the pseudophase diagram for toluene, water and 2-propanol, in the absence and in the presence of surfactant [sodium dodecyl sulfate (SDS) and hexadecyltrimethylammonium bromide (HTAB)]. The composition of the three solutions (Table 6.11) corresponds to a W/O-fiE (A), a solution of small aggregates (B) and a normal ternary solution (C). The diastereoselectivity was practically constant in the absence and in the presence of surfactant a slight increase of endo adduct was observed in the C medium in the presence of surfactant. This suggests that the reaction probably occurs in the interphase and that the transition state has a similar environment in all three media. [Pg.282]

In contrast with exo (top) facial selectivity in the additions to norbomene 80 [41], Diels-Alder reaction between isodicyclopentadiene 79 takes place from the bottom [40] (see Scheme 32). To solve this problem, Honk and Brown calculated the transition state of the parent Diels-Alder reaction of butadiene with ethylene [47], They pointed ont that of particular note for isodicyclopentadiene selectivity issue is the 14.9° out-of-plane bending of the hydrogens at C2 and C3 of butadiene. The bending is derived from Cl and C4 pyramidalization and rotation inwardly to achieve overlap of p-orbitals on these carbons with the ethylene termini. To keep the tr-bonding between C1-C2 and C3-C4, the p-orbitals at C2 and C3 rotate inwardly on the side of the diene nearest to ethylene. This is necessarily accompanied by C2 and C3 hydrogen movanent toward the attacking dienophile. They proposed that when norbomene is fused at C2 and C3, the tendency of endo bending of the norbomene framework will be manifested in the preference for bottom attack in Diels-Alder reactions (Schane 38). [Pg.207]

The stereoselectivity of some Diels-Alder reactions was also strongly affected in water.26 At low concentrations, in which both components were completely dissolved, the reaction of cyclopentadiene with butenone gave a 21.4 1 ratio of endo/exo products when they were stirred at 0.15 M concentration in water, compared to only a 3.85 1 ratio in excess cyclopentadiene and an 8.5 1 ratio with ethanol as the solvent. Aqueous detergent solution had no effect on the product ratio. The stereochemical changes were explained by the need to minimize the transition-state surface area in water solution, thus favoring the more compact endo stereochemistry. The results are also consistent with the effect of polar media on the ratio.27... [Pg.377]

Theoretical considerations in the same fashion enable predication of the possible configuration of the transition state. Eq. (3.25 b) for the multicentre interaction is utilized. Hoffmann and Woodward 136> used such methods to explain the endo-exo selectivity of the Diels-Alder reaction (Fig. 7.28). The maximum overlapping criteria of the Alder rule is in this case valid. The prevalence of the endo-addition is experimentally known 137>. [Pg.66]

The reaction of nitrostyrene with cyclopentadiene gives the normal Diels-Alder adduct. However, the Lewis acid-catalyzed cycloaddition affords two isomeric nitronates, syn and anti in an 80-to-20 ratio. The major isomer is derived from an endo transition state. The preference of yy/i-fused cycloadducts can be understood by considering secondary orbital interactions (Eq. 8.95).152... [Pg.275]

TWo of the monoclonal antibodies produced, 7D4 and 22C8, proved to be completely stereoselective, separately catalysing the endo and the exo Diels-Alder reactions, with a fccat of 3.44 X 10-3 and 3.17 X 10 3 min-1 respectively at 25°C. That the turnover numbers are low was attributed in part to limitations in transition state representation modelling studies had shown that the transition states for both the exo and endo processes were asynchronous whereas both TSAs [61] and [62] were based on synchronous transition states (Gouverneur et al., 1993). [Pg.287]

FIGURE 1. Endo and exo transition states of the Diels-Alder reaction... [Pg.339]

The endo selectivity in many Diels-Alder reactions has been attributed to attractive secondary orbital interactions. In addition to the primary stabilizing HOMO-LUMO interactions, additional stabilizing interactions between the remaining parts of the diene and the dienophile are possible in the endo transition state (Figure 3). This secondary orbital interaction was originally proposed for substituents having jr orbitals, e.g. CN and CHO, but was later extended to substituents with tt(CH2) type of orbitals, as encountered in cyclopropene57. [Pg.341]

FIGURE 2. The Diels-Alder reaction of cyclopentadiene with methyl vinyl ketone. The selectivity leading to the endo-product (endo-selectivity of Diels-Alder reactions) is rationalized by secondary orbital interactions in the endo-transition state... [Pg.1041]

Subsequent monosilylation and Wittig reaction furnished unsymmetrical double diene 170. The synthesis of the other Diels-Alder partner started from bromophenol 173 (prepared in three steps from dimethoxytoluene), which was doubly metalated and reacted with (S,S)-menthylp-toluenesulfinate 173. CAN oxidation delivered quinone 171, which underwent a Diels-Alder reaction with double diene 170 to give compound 175 possessing the correct regio- and stereochemistry. Upon heating in toluene the desired elimination occurred followed by IMDA reaction to adduct 176, which was obtained in an excellent yield and enantioselectivity. Both Diels-Alder reactions proceeded through an endo transition state the enantioselectivity of the first cyclization is due to the chiral auxiliary, which favors an endo approach of 170 to the sterically less congested face (top face) (Scheme 27). [Pg.38]


See other pages where Diels-Alder reaction endo transition state is mentioned: [Pg.558]    [Pg.558]    [Pg.574]    [Pg.6]    [Pg.204]    [Pg.308]    [Pg.311]    [Pg.314]    [Pg.57]    [Pg.76]    [Pg.121]    [Pg.149]    [Pg.207]    [Pg.216]    [Pg.36]    [Pg.80]    [Pg.211]    [Pg.169]    [Pg.82]    [Pg.392]    [Pg.355]    [Pg.155]    [Pg.1047]    [Pg.35]   
See also in sourсe #XX -- [ Pg.316 ]




SEARCH



Diels transition state

Endo transition state

Transition Diels-Alder

Transition state Diels Alder reaction

Transition states reactions

© 2024 chempedia.info