Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition State Geometries

At the time the experiments were perfomied (1984), this discrepancy between theory and experiment was attributed to quantum mechanical resonances drat led to enhanced reaction probability in the FlF(u = 3) chaimel for high impact parameter collisions. Flowever, since 1984, several new potential energy surfaces using a combination of ab initio calculations and empirical corrections were developed in which the bend potential near the barrier was found to be very flat or even non-collinear [49, M], in contrast to the Muckennan V surface. In 1988, Sato [ ] showed that classical trajectory calculations on a surface with a bent transition-state geometry produced angular distributions in which the FIF(u = 3) product was peaked at 0 = 0°, while the FIF(u = 2) product was predominantly scattered into the backward hemisphere (0 > 90°), thereby qualitatively reproducing the most important features in figure A3.7.5. [Pg.878]

Aj ala P Y and H B Schlegel 1997. A Combined Method for Determining Reaction Paths, Minima and Transition State Geometries. Journal of Chemical Physics 107 375-384. [Pg.315]

The QST3 technique requires the user to supply structures for the complex of reactants and the complex of products, and a guess of the transition state geometry. This helps assure that the desired path is examined, but the calculation is also biased by the user s predicted mechanism, which may be incorrect. [Pg.153]

Accumulating evidence makes it increasingly clear that there is no single dominant Wittig transition state geometry and, therefore, no simple scheme to explain cis/trans selec-tivities. The conventional betaine pathway may not occur at all, the stabilized ylides, e,g., PhsP—CH —C02Et, can be ( )- or (Z)-selective, depending on the solvent and substrate (E. Vedejs, 1988 A, B, 1990). [Pg.29]

Once HyperChem calculates potential energy, it can obtain all of the forces on the nuclei at negligible additional expense. This allows for rapid optimization of equilibrium and transition-state geometries and the possibility of computing force constants, vibrational modes, and molecular dynamics trajectories. [Pg.33]

HyperChem offers a Reaction Map facility under the Setup menu. This is needed for the synchronous transit method to match reactants and products, and depending on X (a parameter having values between 0 and 1, determining how far away from reactants structures a transition structure can be expected) will connect atoms in reactants and products and give an estimated or expected transition structure. This procedure can also be used if the eigenvector following method is later chosen for a transition state search method, i.e., if you just want to get an estimate of the transition state geometry. [Pg.67]

The stereochemical outcome of these reactions can be explained by considering the transition-state geometry. For example, applying the Houk model (495) to akyhc alcohols and their derivatives, the smallest substituent at the preexisting chiral center is oriented "inside" over the face of the transition-state ring and the oxygen atom "outside" (483). [Pg.322]

Manufacture. Cinnamaldehyde is routinely produced by the base-cataly2ed aldol addition of ben2aldehyde /7(9(9-with acetaldehyde [75-07-0], a procedure which was first estabUshed in the nineteenth century (31). Formation of the (H)-isomer is favored by the transition-state geometry associated with the elimination of water from the intermediate. The commercial process is carried out in the presence of a dilute sodium hydroxide solution (ca 0.5—2.0%) with at least two equivalents of ben2aldehyde and slow addition of the acetaldehyde over the reaction period (32). [Pg.175]

Examine conformational energy profiles for Z-penta-1,3-diene and E,E-hexa-2,4-diene together with transition-state geometries for cycloadditions with TCNE (Z-penta-1,3-diene+TCNE and E,E-hexa-2,4-diene+TCNE, respectively). Predict the rates of Diels-Alder reactions involving these two dienes, relative to that for cycloaddition of E-penta-1,3-diene with TCNE. [Pg.277]

Transition State Geometry. The geometry corresponding to a Stationary Point on the Potential Energy Surface which is an energy minimum in all directions except one (the Reaction Coordinate), for which it is an energy maximum. [Pg.283]

This model prediets that tri-substituted and tetra-substituted olefins would also be poor substrates. Thus it was not until 1994 that a study in the epoxidation of higher substituted olefins appeared. Indeed Jaeobsen revealed that tri-substituted olefins, and even tetra-substituted olefins ean be excellent substratesA new model was put forth that encompasses a skewed side-on approach of tri-substituted olefins to the Mn-oxo eomplex. The observation that certain tetrasubstituted olefins undergo epoxidation with good enantioseleetivity suggests that further studies are needed in order to fully understand the transition state geometry of the catalyst and substrate. [Pg.37]

Ab initio Hartree-Fock and density functional theory calculations were performed to study the transition state geometry in intramolecular Diels-Alder cycloaddition of azoalkenes 55 to give 2-substituted 3,4,4u,5,6,7-hexahydro-8//-pyrido[l,2-ft]pyridazin-8-ones 56 (01MI7). [Pg.235]

An expedient and stereoselective synthesis of bicyclic ketone 30 exemplifies the utility and elegance of Corey s new catalytic system (see Scheme 8). Reaction of the (R)-tryptophan-derived oxazaboro-lidine 42 (5 mol %), 5-(benzyloxymethyl)-l,3-cyclopentadiene 26, and 2-bromoacrolein (43) at -78 °C in methylene chloride gives, after eight hours, diastereomeric adducts 44 in a yield of 83 % (95 5 exo.endo diastereoselectivity 96 4 enantioselectivity for the exo isomer). After reaction, the /V-tosyltryptophan can be recovered for reuse. The basic premise is that oxazaborolidine 42 induces the Diels-Alder reaction between intermediates 26 and 43 to proceed through a transition state geometry that maximizes attractive donor-acceptor interactions. Coordination of the dienophile at the face of boron that is cis to the 3-indolylmethyl substituent is thus favored.19d f Treatment of the 95 5 mixture of exo/endo diastereo-mers with 5 mol % aqueous AgNC>3 selectively converts the minor, but more reactive, endo aldehyde diastereomer into water-soluble... [Pg.80]

Gratifyingly, when compound 24 is refluxed in a solution of toluene at 110°C, it undergoes quantitative [4+2] cycloaddition to polycyclic system 25. The indicated stereochemistry of 25 was anticipated on the basis of the trans,trans geometry of the phenyl-diene system in precursor 24 and the presumed preference for an exo transition state geometry. These assumptions were vindicated by the eventual conversion of 25 to endiandric acids A (1) and B (2). [Pg.270]


See other pages where Transition State Geometries is mentioned: [Pg.2349]    [Pg.2350]    [Pg.11]    [Pg.299]    [Pg.305]    [Pg.632]    [Pg.514]    [Pg.149]    [Pg.347]    [Pg.975]    [Pg.495]    [Pg.939]    [Pg.975]    [Pg.278]    [Pg.283]    [Pg.283]    [Pg.276]    [Pg.85]    [Pg.57]    [Pg.57]    [Pg.137]    [Pg.151]    [Pg.160]    [Pg.194]    [Pg.214]    [Pg.216]    [Pg.287]    [Pg.335]    [Pg.20]    [Pg.14]    [Pg.23]    [Pg.832]    [Pg.1281]    [Pg.1283]    [Pg.1300]    [Pg.1450]   
See also in sourсe #XX -- [ Pg.215 ]




SEARCH



And transition state geometry

Angular momentum, phase-space transition state geometry

Correlation, effects transition-state geometries

Enolate anions transition state geometry with

Excited-state geometries transition metal complexes

Geometry Optimizations and Transition State Searching

Geometry of the transition state

Geometry optimization transition states

Molecular geometries transition states

Molecular orbital calculations of transition state geometries

Nuclear geometry transition state theory

Quantitative antihydrophobic effects in water and the geometries of transition states

Selectivity, transition state geometry reaction

Subject transition state geometry

Transition states geometry, aldol reaction

Transition-state theory geometries

© 2024 chempedia.info