Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethane liquid

If the experiment was now reversed, starling from A and increasing the pressure, the first drop of ethane liquid would appear at point C, the dew point of the gas. Remember that throughoufthis process, isothermal conditions are maintained. [Pg.99]

Liquid propane Liquid ethane Liquid helium -185°C Highly hazardous, as it can be explosive when mixed with oxygen Can be explosive Useful in coating a metal freezing surface... [Pg.209]

EXAMPLE 2-2 Use Figure 2—10 to estimate the critical temperature and critical pressure of ethane. Also estimate the specific volumes of ethane liquid and gas at 70°F. [Pg.60]

Thus we see, using the program VLMU, we obtain very accurate predictions in a simple manner (though, of course, much work went into preparing the program). With the exception of the 59 mol % ethane liquid, the compositions are predicted to about 0.004 mole fraction and 0.4 bar accuracy. [Pg.376]

To illustrate calculations for a binary system containing a supercritical, condensable component. Figure 12 shows isobaric equilibria for ethane-n-heptane. Using the virial equation for vapor-phase fugacity coefficients, and the UNIQUAC equation for liquid-phase activity coefficients, calculated results give an excellent representation of the data of Kay (1938). In this case,the total pressure is not large and therefore, the mixture is at all times remote from critical conditions. For this binary system, the particular method of calculation used here would not be successful at appreciably higher pressures. [Pg.59]

Figure 4-12. Vapor-liquid equilibria for ethane-n-heptane at 6.9 bars. Ethane is treated as a condensable component even though its critical temperature is 305.4 K. Figure 4-12. Vapor-liquid equilibria for ethane-n-heptane at 6.9 bars. Ethane is treated as a condensable component even though its critical temperature is 305.4 K.
CCls CHO. A colourless oily liquid with a pungent odour b.p. 98°C. Manut actured by the action of chlorine on ethanol it is also made by the chlorination of ethanal. When allowed to stand, it changes slowly to a white solid. Addition compounds are formed with water see chloral hydrate), ammonia, sodium hydrogen sulphite, alcohols, and some amines and amides. Oxidized by nitric acid to tri-chloroethanoic acid. Decomposed by alkalis to chloroform and a methanoate a convenient method of obtaining pure CHCI3. It is used for the manufacture of DDT. It is also used as a hypnotic. [Pg.91]

Manufactured by the liquid-phase oxidation of ethanal at 60 C by oxygen or air under pressure in the presence of manganese(ii) ethanoate, the latter preventing the formation of perelhanoic acid. Another important route is the liquid-phase oxidation of butane by air at 50 atm. and 150-250 C in the presence of a metal ethanoate. Some ethanoic acid is produced by the catalytic oxidation of ethanol. Fermentation processes are used only for the production of vinegar. [Pg.164]

CH2 CH CH0. a colourless, volatile liquid, with characteristic odour. The vapour is poisonous, and intensely irritating to eyes and nose b.p. 53"C. It is prepared by the distillation of a mixture of glycerin, potassium sulphate and potassium hydrogen sulphate. It is manufactured by direct oxidation of propene or cross-condensation of ethanal with meth-anal. [Pg.329]

Under standard conditions of temperature and pressure (STP), the first four members of the alkane series (methane, ethane, propane, and butane) are gases. As length of the carbon increases the density of the compound increases (pentane) to C yHgg are liquids, and from C.,gH3g, the compounds exist as wax-like solids at STP. [Pg.90]

Now using a hydrocarbon component, say ethane, as an example, let us consider the other parameter, volume, using a plot of pressure versus specific volume (i.e. volume per unit mass of the component, the inverse of the density). The process to be described could be performed physically by placing the liquid sample into a closed cell (PVT cell), and then reducing the pressure of the sample by withdrawing the piston of the cell and increasing the volume contained by the sample. [Pg.98]

Starting at condition A with the ethane in the liquid phase, and assuming isothermal depletion, then as the pressure is reduced so the specific volume increases as the molecules move further apart. The relationship between pressure and volume is governed by the compressibility of the liquid ethane. [Pg.98]

Once the bubble point is reached (at point B), the first bubble of ethane vapour is released. From point B to C liquid and gas co-exist in the cell, and the pressure is maintained constant as more of the liquid changes to the gaseous state. The system exhibits infinite compressibility until the last drop of liquid is left In the cell (point C), which is the dew point. Below the dew point pressure only gas remains in the cell, and as pressure is reduced below the dew point, the volume increase is determined by the compressibility of the gas. The gas compressibility is much greater than the liquid compressibility, and hence the change of volume for a given reduction in pressure (the... [Pg.98]

When the two components are mixed together (say in a mixture of 10% ethane, 90% n-heptane) the bubble point curve and the dew point curve no longer coincide, and a two-phase envelope appears. Within this two-phase region, a mixture of liquid and gas exist, with both components being present in each phase in proportions dictated by the exact temperature and pressure, i.e. the composition of the liquid and gas phases within the two-phase envelope are not constant. The mixture has its own critical point C g. [Pg.100]

Using this mixture as an example, consider starting at pressure A and isothermally reducing the pressure to point D on the diagram. At point A the mixture exists entirely in the liquid phase. When the pressure drops to point B, the first bubble of gas is evolved, and this will be a bubble of the lighter component, ethane. As the pressure continues to drop, the gas phase will acquire more of the heavier component and hence the liquid volume decreases. At point C, the last drop of liquid remaining will be composed of the heavier component, which itself will vaporise as the dew point is crossed, so that below... [Pg.100]

When gases are rich in ethane, propane, butane and heavier hydrocarbons and there is a local market for such products it may be economic to recover these condensable components. Natural gas liquids can be recovered in a number of ways, some of which have already been described in the previous section. However to maximise recovery of the individual NGL components, gas would have to be processed in a fractionation plant. [Pg.255]

For an actual determination, first place in J some stable liquid the boiling-point of which is at least 50 above that of the organic liquid the pour density of which is to be measured. This difference in boiling-point is important, because it is essential that the organic liquid, when nbsequently dropped into the bottom of T, should volatilise rapidly nd so push out an equivalent volume of air before the organic vapour can diffuse up the tube T and possibly condense in the cooler ttppcr portion of the tube. Suitable liquids for use in the jacket are ter, chlorobenzene (132°), rym-tetrachloro-ethane (147 ), P ... [Pg.425]

Natural gas, depending on its source, contains—besides methane as the main hydrocarbon compound (present usually at >80-90%) — some of the higher homologous alkanes (ethane, propane, butane). In wet gases the amount of C2-C5 alkanes is higher (gas liquids). [Pg.127]

Natural gas is an abundant source of methane ethane and propane Petro leum IS a liquid mixture of many hydrocarbons including alkanes A1 kanes also occur naturally m the waxy coating of leaves and fruits... [Pg.98]

Paraffins. Methane and ethane are simple asphyxiants, whereas the higher homologues are central nervous system depressants. Liquid paraffins can remove oil from exposed skin and cause dermatitis or pneumonia in lung tissue. Generally, paraffins are the least toxic class of hydrocarbons. [Pg.370]

As discussed in Sec. 4, the icomplex function of temperature, pressure, and equilibrium vapor- and hquid-phase compositions. However, for mixtures of compounds of similar molecular structure and size, the K value depends mainly on temperature and pressure. For example, several major graphical ilight-hydrocarbon systems. The easiest to use are the DePriester charts [Chem. Eng. Prog. Symp. Ser 7, 49, 1 (1953)], which cover 12 hydrocarbons (methane, ethylene, ethane, propylene, propane, isobutane, isobutylene, /i-butane, isopentane, /1-pentane, /i-hexane, and /i-heptane). These charts are a simplification of the Kellogg charts [Liquid-Vapor Equilibiia in Mixtures of Light Hydrocarbons, MWK Equilibnum Con.stants, Polyco Data, (1950)] and include additional experimental data. The Kellogg charts, and hence the DePriester charts, are based primarily on the Benedict-Webb-Rubin equation of state [Chem. Eng. Prog., 47,419 (1951) 47, 449 (1951)], which can represent both the liquid and the vapor phases and can predict K values quite accurately when the equation constants are available for the components in question. [Pg.1248]


See other pages where Ethane liquid is mentioned: [Pg.61]    [Pg.572]    [Pg.30]    [Pg.216]    [Pg.746]    [Pg.1127]    [Pg.30]    [Pg.147]    [Pg.61]    [Pg.572]    [Pg.30]    [Pg.216]    [Pg.746]    [Pg.1127]    [Pg.30]    [Pg.147]    [Pg.10]    [Pg.72]    [Pg.163]    [Pg.164]    [Pg.164]    [Pg.165]    [Pg.167]    [Pg.168]    [Pg.296]    [Pg.337]    [Pg.419]    [Pg.256]    [Pg.846]    [Pg.855]    [Pg.277]    [Pg.79]    [Pg.80]    [Pg.80]    [Pg.171]    [Pg.747]    [Pg.2001]   
See also in sourсe #XX -- [ Pg.175 ]




SEARCH



© 2024 chempedia.info