Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Data Table Presentation

Section 5.3, Data Table Presentation, illustrates the format used for data tables and explains the type of information contained. Data tables have been presented only for those data cells where data existed at that level in the taxonomy. These are listed by taxonomy number in the Data Cell Index, Table 5.2. [Pg.126]

Computations may be carried out by optimizing the parameters of the applied equations as well as the specific capacity of adsorbed phase for obtaining the best fit of theoretical excess isotherms to the experimental data. Tables presented below contain the characteristics of the adsorption systems from Table 1 illustratively used for computations and the calculation results obtained for Eq.(7) combined with substitutions (27) or (29) under the assumption that n = const. [Pg.662]

In addition to their practical use in industrial research and development, the correlations and extensive data tables presented in this book should help researchers pursuing more fundamental theoretical approaches to the structure-property relationships in polymers. The correlations may point out interrelationships which have not been noticed in previous work. The tables of data may provide many test cases to evaluate new predictive theories. Empirical (correlative) approaches and their embodiments in predictive schemes often catalyze conceptual advances. Phenomenological and empirical treatments have preceded very significant theoretical and conceptual advances in many areas of science and technology. Such treatments have provided foundations of critically evaluated data and carefully quantified sets of interrelationships, upon which later workers have erected theoretical edifices transcending the systematic correlation of available data. We therefore hope that theoretically inclined polymer scientists will find some of the information presented in this book helpful in their efforts. [Pg.661]

On entering SigmaPlot (we use version 5.0), one is presented with a data table that is essentially a spreadsheet. Enter T as the independent or A -variable into the first eolumn of the SigmaPlot data table and Cp/T as the dependent or y-variable into the second column. The SigmaPlot data table should resemble columns 1 and 3 of Table 1-3. Rounding to three significant figures is permissible. [Pg.26]

Figure 9.7 Plot of In [r ] versus In M for the data in Table 9.3. An analysis of the Mark-Houwink coefficients from these data is presented in Example 9.3. Figure 9.7 Plot of In [r ] versus In M for the data in Table 9.3. An analysis of the Mark-Houwink coefficients from these data is presented in Example 9.3.
Naphthalene is very slightly soluble in water but is appreciably soluble in many organic solvents, eg, 1,2,3,4-tetrahydronaphthalene, phenols, ethers, carbon disulfide, chloroform, ben2ene, coal-tar naphtha, carbon tetrachloride, acetone, and decahydronaphthalene. Selected solubiUty data are presented in Table 4. [Pg.482]

A composite curve of heat of infinite dilution of oleum from reported data (3,88—90) is presented in a compiled form in the Hterature (91), where heats of formation of oleums from Hquid or gaseous SO are also reported (Tables 5 and 6). Heat of vaporization data are also available (92). Oleum heat capacity data are presented in Figure 18 (76) solubiUty data for SO2 in oleum can be found in Reference 69. [Pg.181]

Boron tnhahdes, BX, are trigonal planar molecules which are sp hybridized. The X—B—X angles are 120°. Important physical and thermochemical data are presented in Table 1 (8—14). Additional thermodynamic and spectroscopic data may be found in the hterature (1 5). [Pg.222]

Properties of Light and Heavy Hydrogen. Vapor pressures from the triple point to the critical point for hydrogen, deuterium, tritium, and the various diatomic combinations are Hsted in Table 1 (15). Data are presented for the equiUbrium and normal states. The equiUbrium state for these substances is the low temperature ortho—para composition existing at 20.39 K, the normal boiling point of normal hydrogen. The normal state is the high (above 200 K) temperature ortho—para composition, which remains essentially constant. [Pg.3]

We start with the reaction of abstraction of a hydrogen atom by a CH3 radical from molecules of different matrices (see, e.g., Le Roy et al. [1980], Pacey [1979]). These systems were the first to display the need to go beyond the one-dimensional consideration. The experimental data are presented in table 2 together with the barrier heights and widths calculated so as to fit the theoretical dependence (2.1) with a symmetric gaussian barrier. [Pg.94]

Measurement of (R /R ) can be accomplished by cyclic voltammetry for relatively Stable species and by other methods for less stable cations. The values obtained for AG -range from 83kcal/mol for the aromatic tropylium ion to 130kcal/mol for destabilized betizylic cations. For stable carbocations, the results obtained by this method correlate with cation stabiUty as measured by pKf.+. Some of these data are presented in Table 5.3. [Pg.280]

CCPS, 1989b, Process Equipment Reliability Data (Table 4.1-1) is a compilation of chemical and nuclear data. It assesses failure rates for 75 types of chemical process equipment. A taxonomic classification is established and data such as the mean, median, upper and lower (95% and 5%) values, source of information, failure by time and failure by demands are presented. [Pg.153]

Number and type of record The number of data points or tables of data presented in the resource or the number of events the data set reflects where available, the form in which the data are presented, such as failure rates or availability data, confidence intervals or error factors the raw data source used, sueh as surveys, plant records, tests, or judgment. [Pg.29]

Chloroquinoline (401) reacts well with potassium fluoride in dimethylsulfone while its monocyclic analog 2-chloropyridine does not. Greater reactivity of derivatives of the bicyclic azine is evident also from the kinetic data (Table X, p. 336). 2-Chloroquinoline is alkoxylated by brief heating with methanolic methoxide or ethano-lic potassium hydroxide and is converted in very high yield into the thioether by trituration with thiocresol (20°, few hrs). It also reacts with active methylene carbanions (45-100% yield). The less reactive 3-halogen can be replaced under vigorous conditions (160°, aqueous ammonia-copper sulfate), as used for 3-bromoquino-line or its iV-oxide. 4-Chloroquinoline (406) is substituted by alcoholic hydrazine hydrate (80°, < 8 hr, 20% yield) and by methanolic methoxide (140°, < 3 hr, > 90% yield). This apparent reversal of the relative reactivity does not appear to be reliable in the face of the kinetic data (Tables X and XI, pp. 336 and 338) and the other qualitative comparisons presented here. [Pg.364]

As the alkaloid was extracted with hexane, acetone, and ethanol, subjected to column chromatography, acidified (AcOH) and then neutralized (NaOH), the cationic form was formulated as a hydroxide salt. However, only two OH groups were detectable on H NMR spectroscopy. Only slight differences were found in the UV spectra taken in methanol [kmax (loge) = 218 (4.68), 302 (4.39), 394 (4.08) nm] and methanol+NaOH [T-max (loge) = 228 (4.66), 310 (4.39) nm]. Three tautomeric forms can be formulated which are shown in Scheme 42. Two of them possess the isoquinolium-7-olate moiety. The H NMR data are presented in Table IV. They indeed unambiguously resemble the cationic species 112. [Pg.107]

Methylisoquinolinium 2-carboxylate (230), originally prepared by Quast (70LA64), was recently identified as a defensive betaine from Photuris versicolor fireflies (99JNP378). It is a pseudo-cross-conjugated mesomeric betaine isoconjugate to the odd alternant hydrocarbon 2-isopropenyl-naphthalene anion which is an odd alternant hydrocarbon anion. This compound therefore is a member of class 13, which is very rare. The UV absorption maxima Imax (methanol) were found at 235 (4.35), 320 (shoulder, 3.97), and 326 (3.99) nm. This compound undergoes similar reactions as Homarine 19 (Scheme 75). The NMR data are presented in Table VIII. [Pg.133]

Total Pressure Loss. Using Table 4-110 and Equations 4-150 and 4-151, the pressure loss across the turbine motor can be determined for the various circulation flowrates and the mud weight of 16.2 Ib/gal. These data together with the above bit pressure loss data are presented in Table 4-113. Also presented in Table 4-113 are the component pressure losses of the system for the various circulation flowrates considered. The total pressure loss tabulated in the lower row represents the surface standpipe pressure when operating at the various circulation flowrates. [Pg.875]

The basis of the calculation is operation for 1 hour. Necessary data are presented in Table 9.1. The energy balance is based on first law of thermodynamics ... [Pg.230]

Continuous Polymerizations As previously mentioned, fifteen continuous polymerizations in the tubular reactor were performed at different flow rates (i.e. (Nj g) ) with twelve runs using identical formulations and three runs having different emulsifier and initiator concentrations. A summary of the experimental runs is presented in Table IV and the styrene conversion vs reaction time data are presented graphically in Figures 7 to 9. It is important to note that the measurements of pressure and temperature profiles, flow rate and the latex properties indicated that steady state operation was reached after a period corresponding to twice the residence time in the tubular reactor. This agrees with Ghosh s results ). [Pg.123]

Concerns over atmospheric methane as a greenhouse gas and the large contribution of biomethanogenesis as a source of this gas make it important to determine the relative significance of various components of this activity. A recent paper (8) summarized estimates (28-30) of source fluxes of atmospheric methane based on several carbon isotopic studies and presented new data on natural sources and biomass burning. These data (Table III) show that of a total flux of 594 million tons (Tg) per year, 83% is produced via biomethanogenesis from a combination of natural (42%) and anthropogenic (41%) sources. [Pg.345]

The definition of the chemical processing industries (CPI) used in this table is the one used by Data Resources and Chemical Engineering in compiling their statistics on these industries. For several of the industries listed, only a part is considered to be in the CPI and data are presented for this part only. A list of the Standard Industrial Classification codes used to define the CPI for this table is given in Appendix C. [Pg.23]

The chapter covers end points in the same order they appear within the Discussion of Health Effects by Route of Exposure section, by route (inhalation, oral, dermal) and within route by effect. Human data are presented first, then animal data. Both are organized by duration (acute, intermediate, chronic). In vitro data and data from parenteral routes (intramuscular, intravenous, subcutaneous, etc.) are also considered in this chapter. If data are located in the scientific literature, a table of genotoxicity information is included. [Pg.253]

A series of papers by Merz and Riedel describe work designed to compare radiochemical behaviour following n,y n,p E.C. and p decay. Gallium isotopes are produced in most of the cases studied, but isotopes of Sn, Pb, Ge and Sb were also involved. Unfortunately, the various chromatography fractions were not well identified, so that it is not easy to draw definite conclusions from this work. Nevertheless, several things do appear to be clear. Some interesting data are presented in Table 5, comparing the effects of electron capture, neutron capture, and the (n,p) reaction. [Pg.71]

The raw data table is displayed with the numbers on a white background and the headers and index on a gray one a yellow How-to-Procede panel gives instructions, respectively confirms choices two white panels display the file size and the presently selected rounding option. [Pg.363]

The most convenient and successful synthetic preparation of octa-chlorodibenzo-p-dioxin has been described by Kulka (13). The procedure involves chlorination of pentachlorophenol in refluxing trichlorobenzene to give octachlorodibenzo-p-dioxin in 80% yield. Kulka has explained the reaction as coupling between two pentachlorophenoxy radicals. Large amounts (5—15%) of heptachlorodibenzo-p-dioxin were observed in the unpurified product. Since the pentachlorophenol used in this study contained 0.07% tetrachlorophenol, we feel that tetrachloro-phenol may be produced in situ (Reaction 4). Such a scheme would be analogous to the formation of 2,4-dichlorophenol and 3-chlorophenol produced from 2,4,4 -trichloro-2 -hydroxydiphenyl ether (Reaction 2). The solubility of octachlorodibenzo-p-dioxin was determined in various solvents data are presented in Table II. [Pg.130]


See other pages where Data Table Presentation is mentioned: [Pg.132]    [Pg.132]    [Pg.132]    [Pg.132]    [Pg.27]    [Pg.13]    [Pg.20]    [Pg.386]    [Pg.7]    [Pg.1823]    [Pg.6]    [Pg.84]    [Pg.225]    [Pg.335]    [Pg.89]    [Pg.524]    [Pg.197]    [Pg.89]    [Pg.255]    [Pg.146]    [Pg.348]    [Pg.336]    [Pg.209]    [Pg.258]    [Pg.308]   


SEARCH



Data presentation

Presentation of Data Tables

Presentation of Data in Tables and Figures

Presenting data in tables

© 2024 chempedia.info