Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Data conversion streaming

The Input Translator is completely table driven. This means that all of the information needed to process input statements (such as names of keywords, default values of data items, etc.) is stored in tables in a file called the System Definition File. Therefore, it is easy to add keywords or change defaults by changing entries in the System Definition File. In addition to the Input Language tables, almost any "changeable" information related to Input Translation is stored in the System Definition File. This includes unit conversion tables, attribute descriptions, physical property option models, data structure, unit operation model data, and stream requirements, etc. Thus it is easy to add new system parameters without changing any code in the Input Translator. [Pg.293]

Solubility data can be found ia a variety of units, and conversion from one set of units to another often is requited before computation of yield can be performed. Guides to such conversions are available. It is often most convenient, however, to express solubiUty and compositions ia mixed streams ia terms of mass ratios, ie, mass of solute per mass of solvent. [Pg.341]

The total releases to air from the facility must be entered m Part III, Section 5 of Form R in pounds per year. The stack test results provide the concentration of metallic lead in each exhaust stream in grains per cubic toot and the exhaust rate in cubic feet per minute. Using the appropriate conversion factors, knowing the scrubber efficiency (from the manufacturer s data), and assuming yourfacility operates 24 hours per day, 300 days per year, you can calculate the total lead releases from the stack test data. Because point (stack) releases of lead are 2,400 pounds per year,-which is greater than the 999 pounds per year ranges in column A. 1, you must enter the actual calculated amount in column A.2 of Section 5.2. [Pg.83]

A process lean stream and an external MSA are considered for removing H2S. The process lean stream, S1, is a caustic soda solution which can be used as a solvent for the reactive separation of H2S. An added bonus for using the process MSA is the conversion of a portion of the absorbed H2S into Na2S, which is needed for white-liquor makeup. In other words, H2S pollutant is converted into a valuable chemical which is needed in the process. The external MSA, S2, is a polym ic adsorbent. The data for the candidate MSAs are given in Table 8.2. The equilibrium... [Pg.203]

Provided that the catalyst is active enough, there will be sufficient conversion of the pollutant gases through the pellet bed and the screen bed. The Sherwood number of CO is almost equal to the Nusselt number, and 2.6% of the inlet CO will not be converted in the monolith. The diffusion coefficient of benzene is somewhat smaller, and 10% of the inlet benzene is not converted in the monolith, no matter how active is the catalyst. This mass transfer limitation can be easily avoided by forcing the streams to change flow direction at the cost of some increased pressure drop. These calculations are comparable with the data in Fig. 22, taken from Carlson 112). [Pg.104]

The kinetic parameters associated with the synthesis of norbomene are determined by using the experimental data obtained at elevated temperatures and pressures. The reaction orders with respect to cyclopentadiene and ethylene are estimated to be 0.96 and 0.94, respectively. According to the simulation results, the conversion increases with both temperature and pressure but the selectivity to norbomene decreases due to the formation of DMON. Therefore, the optimal reaction conditions must be selected by considering these features. When a CSTR is used, the appropriate reaction conditions are found to be around 320°C and 1200 psig with 4 1 mole ratio of ethylene to DCPD in the feed stream. Also, it is desirable to have a Pe larger than 50 for a dispersed PFR and keep the residence time low for a PFR with recycle stream. [Pg.712]

Figure 2 shows the CO conversion as a function of time on stream in the absence of CO2 in the feed on the 5%Au/Co304 at a space velocity of 60,000 hr . In contrast to the data shown in Figure 1, the catalyst showed an initial CO conversion of about 80% and showed considerable deactivation over eight hours. Figure 3 shows the CO conversion as a function of time at 25°C in the presence 5%Au/Co304, and 1%Au/Ti02 catalysts at a space velocity... [Pg.430]

The consequence of all these (conscious and unconscious) simplifications and eliminations might be that some information not present in the process will be included in the model. Conversely, some phenomena occurring in reality are not accounted for in the model. The adjustable parameters in such simplified models will compensate for inadequacy of the model and will not be the true physical coefficients. Accordingly, the usefulness of the model will be limited and risk at scale-up will not be completely eliminated. In general, in mathematical modelling of chemical processes two principles should always be kept in mind. The first was formulated by G.E.P. Box of Wisconsin All models are wrong, some of them are useful . As far as the choice of the best of wrong models is concerned, words of S.M. Wheeler of New York are worthwhile to keep in mind The best model is the simplest one that works . This is usually the model that fits the experimental data well in the statistical sense and contains the smallest number of parameters. The problem at scale-up, however, is that we do not know which of the models works in a full-scale unit until a plant is on stream. [Pg.233]

The more permeable component is called the fast gas, so it is the one enriched in the permeate stream. Permeabihly through polymers is the product of solubility and diffusivity. The diffusivity of a gas in a membrane is inversely proportional to its kinetic diameter, a value determined from zeolite cage exclusion data (see Table 20-26 after Breck, Zeolite Molecular Sieves, Wiley New York, 1974, p. 636). Tables 20-27, 20-28, and 20-29 provide units conversion factors useful for calculations related to gas-separation membrane systems. [Pg.57]

In Fig. 9, the distribution of reactant C is shown in each environment. As cc is a linear combination of and Y2 (Eq. 78), we can distinguish features of both Fig. 7 and Fig. 8 in the plots in Fig. 9. In particular, because C is injected in the right-hand inlet stream, cC2 and 2 appear to be quite similar. Finally, as shown in Liu and Fox (2006), the CFD predictions for the outlet conversion X are in excellent agreement with the experimental data of Johnson and Prud homme (2003a). For this reactor, the local turbulent Reynolds number ReL is relatively small. The good agreement with experiment is thus only possible if the effects of the Reynolds and Schmidt numbers are accounted for using the correlation for R shown in Fig. 4. Further details on the simulations and analysis of the CFD results can be found in Liu and Fox (2006). [Pg.266]

A La(Cr, Ni) 0, catalyst was tested for the cleanup of residual hydrocarbons in combustion streams by measuring the rate of methane oxidation in a differential laboratory flow reactor containing a sample of the catalyst. The following conversions were measured as a function of temperature with a fixed initial molar flow rate of methane. The inlet pressure was 1 bar and the methane mole fraction was 0.25. (Note that the conversions are small, so that the data approximately represent initial rates.) The rate law for methane oxidation is first-order with respect to methane concentration. [Pg.85]

Experimental plug flow reactors may be small diameter tubes or packed beds with a larger ratio of diameter to length. The argument in favor of their employment is that they may simulate commercial units more closely. Rate data from pilot plant or commercial units also may need to be analyzed. A short packed bed may be operated with a high recycle ratio and will thus achieve substantially isothermal behavior and may have appreciable change in conversion between the net input and output streams. [Pg.112]

To get some idea of the prices to be expected for compounds produced with these approaches, we have estimated the total cost of producing 10,000 tons per annum of 1-octanol from w-octane, based on data collected for this conversion by P. oleovorans, during growth in a two-liquid-phase system containing 15% (v/v) hexadecane as a carrier phase. n-Octane is dissolved in the carrier phase to a concentration of 5-10% (v/v), converted by the P. oleovorans cells in the aqueous phase, and the product 1 -octanol dissolves in the hexadecane phase once more. Downstream processing consists of a phase separation, followed by two distillation steps. In the first step, the C8 alkane/alkanol are separated from the hexadecane, which is recycled into the bioreactor. In the second step, the w-octane is distilled off the n-octanol the octane is recycled to the bioreactor, and the octanol is collected as the desired product. This approach leads to a very clean product stream of >98% pure 1-octanol. ... [Pg.295]

Level 1 sampling provides a single set of samples acquired to represent the average composition of each stream. This sample set is separated, either in the field or in the laboratory, into solid, liquid, and gas-phase components. Each fraction is evaluated with survey techniques which define its basic physical, chemical, and biological characteristics. The survey methods selected are compatible with a very broad spectrum of materials and have sufficient sensitivity to ensure a high probability of detecting environmental problems. Analytical techniques and instrumentation have been kept as simple as possible in order to provide an effective level of information at minimum cost. Each individual piece of data developed adds a relevant point to the overall evaluation. Conversely, since the information from a given analysis is limited, all the tests must be performed to provide a valid assessment of the sample. [Pg.33]

The synthesis pathway of quinolizidine alkaloids is based on lysine conversion by enzymatic activity to cadaverine in exactly the same way as in the case of piperidine alkaloids. Certainly, in the relatively rich literature which attempts to explain quinolizidine alkaloid synthesis °, there are different experimental variants of this conversion. According to new experimental data, the conversion is achieved by coenzyme PLP (pyridoxal phosphate) activity, when the lysine is CO2 reduced. From cadeverine, via the activity of the diamine oxidase, Schiff base formation and four minor reactions (Aldol-type reaction, hydrolysis of imine to aldehyde/amine, oxidative reaction and again Schiff base formation), the pathway is divided into two directions. The subway synthesizes (—)-lupinine by two reductive steps, and the main synthesis stream goes via the Schiff base formation and coupling to the compound substrate, from which again the synthetic pathway divides to form (+)-lupanine synthesis and (—)-sparteine synthesis. From (—)-sparteine, the route by conversion to (+)-cytisine synthesis is open (Figure 51). Cytisine is an alkaloid with the pyridone nucleus. [Pg.89]

In the previous section, we showed that resid feed takes more advantages of HCO recycling. In this section, we look at the effect of the boiling point range of recycle stream on the cracking yields. In Section 1.3.4, the effect of conversion level will be discussed. The data presented in these two sections are from resid feed. [Pg.12]

After stirring for 2 h, the pressure was released and the solvent was evaporated in a slow stream of nitrogen gas. The residue was extracted with heptane (3mL) and the resulting suspension filtered through a syringe filter. The filtrate was directly analyzed by GC and chiral HPLC to determine the conversion and enantiomeric excess (for analytical procedures and data, see ref. [1]). [Pg.47]

Ultimately, the final choice of the temperature, pressure, reactant ratio and conversion at which the reactor will operate depends on an assessment of the overall economics of the process. This will take into account the cost of the reactants, the cost of separating the products and the costs associated with any recycle streams. It should include all the various operating costs and capital costs of reactor and plant. In the course of making this economic assessment, a whole series of calculations of operating conditions, final conversion and reactor size may be performed with the aid of a computer, provided that the data are available. Each of these sets of conditions may be technically feasible, but the one chosen will be that which gives the maximum profitability for the project as a whole. [Pg.15]

Two UV detectors are also available from Laboratory Data Control, the UV Monitor and the Duo Monitor. The UV Monitor (Fig.3.45) consists of an optical unit anda control unit. The optical unit contains the UV source (low-pressure mercury lamp), sample, reference cells and photodetector. The control unit is connected by cable to the optical unit and may be located at a distance of up to 25 ft. The dual quartz flow cells (path-length, 10 mm diameter, 1 mm) each have a capacity of 8 (i 1. Double-beam linear-absorbance measurements may be made at either 254 nm or 280 nm. The absorbance ranges vary from 0.01 to 0.64 optical density units full scale (ODFS). The minimum detectable absorbance (equivalent to the noise) is 0.001 optical density units (OD). The drift of the photometer is usually less than 0.002 OD/h. With this system, it is possible to monitor continuously and quantitatively the absorbance at 254 or 280 nm of one liquid stream or the differential absorbance between two streams. The absorbance readout is linear and is directly related to the concentration in accordance with Beer s law. In the 280 nm mode, the 254-nm light is converted by a phosphor into a band with a maximum at 280 nm. This light is then passed to a photodetector which is sensitized for a response at 280 nm. The Duo Monitor (Fig.3.46) is a dual-wavelength continuous-flow detector with which effluents can be monitored simultaneously at 254 nm and 280 nm. The system consists of two modules, and the principle of operation is based on a modification of the 280-nm conversion kit for the UV Monitor. Light of 254-nm wavelength from a low-pressure mercury lamp is partially converted by the phosphor into a band at 280 nm. [Pg.89]

Reaction conditions were as follows Bz/02/He = 10 5 85 (mol.%) W/F = 37 gcat h (g molBz) 1. The conversion of benzene was taken at 20-30 min on stream. Using this catalyst [146], the phenol yield at 20-30 min on stream was approximately twice that reported previously [144, 145]. UV/Vis and Raman data indicated that the production of phenol was maximized in the presence of copper-polymeric (size-limited) species, though isolated copper species such as cations and dimers also catalyzed the benzene-to-phenol transformation. [Pg.63]


See other pages where Data conversion streaming is mentioned: [Pg.159]    [Pg.572]    [Pg.87]    [Pg.35]    [Pg.268]    [Pg.245]    [Pg.224]    [Pg.565]    [Pg.598]    [Pg.101]    [Pg.334]    [Pg.388]    [Pg.35]    [Pg.297]    [Pg.220]    [Pg.88]    [Pg.297]    [Pg.337]    [Pg.387]    [Pg.364]    [Pg.2]    [Pg.12]    [Pg.19]    [Pg.243]    [Pg.176]    [Pg.179]    [Pg.35]    [Pg.437]    [Pg.87]   
See also in sourсe #XX -- [ Pg.326 ]




SEARCH



Data conversion

© 2024 chempedia.info