Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclohexenes 2 + 2 + 2 cycloaddition reactions

The alkene that adds to the diene is called the dienophile Because the Diels-Alder reaction leads to the formation of a ring it is termed a cycloaddition reaction The prod uct contains a cyclohexene ring as a structural unit... [Pg.409]

Cycloaddition involves the combination of two molecules in such a way that a new ring is formed. The principles of conservation of orbital symmetry also apply to concerted cycloaddition reactions and to the reverse, concerted fragmentation of one molecule into two or more smaller components (cycloreversion). The most important cycloaddition reaction from the point of view of synthesis is the Diels-Alder reaction. This reaction has been the object of extensive theoretical and mechanistic study, as well as synthetic application. The Diels-Alder reaction is the addition of an alkene to a diene to form a cyclohexene. It is called a [47t + 27c]-cycloaddition reaction because four tc electrons from the diene and the two n electrons from the alkene (which is called the dienophile) are directly involved in the bonding change. For most systems, the reactivity pattern, regioselectivity, and stereoselectivity are consistent with describing the reaction as a concerted process. In particular, the reaction is a stereospecific syn (suprafacial) addition with respect to both the alkene and the diene. This stereospecificity has been demonstrated with many substituted dienes and alkenes and also holds for the simplest possible example of the reaction, that of ethylene with butadiene ... [Pg.636]

How do orbital symmetry requirements relate to [4tc - - 2tc] and other cycloaddition reactions Let us constmct a correlation diagram for the addition of butadiene and ethylene to give cyclohexene. For concerted addition to occur, the diene must adopt an s-cis conformation. Because the electrons that are involved are the n electrons in both the diene and dienophile, it is expected that the reaction must occur via a face-to-face rather than edge-to-edge orientation. When this orientation of the reacting complex and transition state is adopted, it can be seen that a plane of symmetry perpendicular to the planes of the... [Pg.638]

The Diels-Alder cycloaddition reaction (Section 14.4) is a pericvclic process that takes place between a diene (four tt electrons) and a dienophile (two tr electrons) to yield a cyclohexene product. Many thousands of examples of Diels-Alder reactions are known. They often take place easily at room temperature or slightly above, and they are stereospecific with respect to substituents. For example, room-temperature reaction between 1,3-butadiene and diethyl maleate (cis) yields exclusively the cis-disubstituted cyclohexene product. A similar reaction between 1,3-butadiene and diethyl fumarate (trans) yields exclusively the trans-disubstituted product. [Pg.1187]

Cycloaddition reactions are those in which two unsaturated molecules add together to yield a cyclic product. For example, Diels-AJder reaction between a diene (four tt electrons) and a dienophile (two tt electrons) yields a cyclohexene. Cycloadditions can take place either by suprafacial or antarafacial pathways. Suprafacial cycloaddition involves interaction between lobes on the same face of one component and on the same face of the second component. Antarafacial cycloaddition involves interaction between lobes on the same face of one component ancl on opposite faces of the other component. The reaction course in a specific case can be found by looking at the symmetry of the HOMO of one component and the lowest unoccupied molecular orbital (LUMO) of the other component. [Pg.1198]

Cycloaddition reactions result in the formation of a new ring from two reactants. A concerted mechanism requires that a single transition state, and therefore no intermediate, lie on the reaction path between reactants and adduct. The most important example of cycloaddition is the Diels-Alder (D-A) reaction. The cycloaddition of alkenes and dienes is a very useful method for forming substituted cyclohexenes.1... [Pg.474]

Methyl-2-propenyl)trimethylsilane reacts with cyclohexene at — 10°C for 25 min to give tra ,s-allylsilylated products, tranx-3-(2-methyl-2-propenyl)-6-tri-methylsilylcyclohexene (15%), and tranx-3-(2-methyl-2-propenyl)-4-tri-methylsilylcyclohexene (3%), but no [3 + 2] cycloaddition product. This result suggests that a methyl substituent on the middle carbon of the allyl group prevents the [3 + 2] cycloaddition reaction. [Pg.47]

In addition to the role of substituents in determining regioselectivity, several other structural features affect the reactivity of dipolarophiles. Strain increases reactivity. Norbomene, for example, is consistently more reactive than cyclohexene in 1,3-dipolar cycloadditions. Conjugated functional groups also usually increase reactivity. This increased reactivity has most often been demonstrated with electron-attracting substituents, but for some 1,3-dipoles, enamines, enol ethers, and other alkenes with donor substituents are also quite reactive. Some reactivity data for a series of alkenes with a few 1,3-dipoles are given in Table 6.3. Scheme 6.5 gives some examples of 1,3-dipolar cycloaddition reactions. [Pg.362]

The third radical cation structure type for hexadiene systems is formed by radical cation addition without fragmentation. Two hexadiene derivatives were mentioned earlier in this review, allylcyclopropene (Sect. 4.4) [245] and dicyclopropenyl (Sect. 5.3) [369], The products formed upon electron transfer from either substrate can be rationalized via an intramolecular cycloaddition reaction which is arrested after the first step (e.g. -> 133). Recent ESR observations on the parent hexadiene system indicated the formation of a cyclohexane-1,4-diyl radical cation (141). The spectrum shows six nuclei with identical couplings of 11.9G, assigned to four axial p- and two a-protons (Fig. 29) [397-399]. The free electron spin is shared between two carbons, which may explain the blue color of the sample ( charge resonance). At temperatures above 90 K, cyclohexane-1,4-diyl radical cation is converted to that of cyclohexene thus, the ESR results do not support a radical cation Cope rearrangement. [Pg.225]

Some novel C60-based assemblies were recently synthesized by [4+2] Diels-Alder cycloaddition reactions. Thus, fused tetrathiafulvalene-C60 dyads and C60-tetra-thiafulvalene-C60 dumbbell triads, in which the fullerene acceptor is doubly tethered to the donor tetrathiafulvalene through a rigidified cyclohexene ring [108], were prepared. With this novel approach, control of the relative orientation as well as the distance between the donor and acceptor units was achieved. Thereby, through-space interactions were expected to dominate because of the special topology of the constructed molecules. More examples of such donor-acceptor hybrid systems are discussed in the appropriate following sections, with their potential use in innovative technological applications. [Pg.10]

Alkylcarbonyl nitrenes have only rarely been used for intermolecular cycloaddition reactions. 2,2-Dimethylpropanoyl nitrene reacts in the usual manner with cyclohexene giving the aziridine (45%) as well as the... [Pg.400]

The acceptor quality of vinyl ketones liberated from methyl 2-alkenyl 2-siloxycyclo-propanecarboxylates can also be used in cycloaddition reactions. Thus y-oxoester 147 adds smoothly to 2-siIoxybutadien 146 affording a cyclohexene derivative which after desilylation gives the tricarbonyl compound 148. This crucial intermediate can be obtained from vinyl cyclopropane 132 as a precursor of 147 in 72 % overall yield 85). Its chemoselective methylation, lactonization, and dehydration make norbisabolid available — a constituent of the root bark of atalantia monophylla. [Pg.107]

A cycloaddition reaction most commonly involves two molecules reacting to form two new sigma bonds between the end atoms of their pi systems, resulting in the formation of a ring. The product has two more sigma bonds and two fewer pi bonds than the reactants. The reactions are classified according to the number of pi electrons in each of the reactants. Thus, the reaction of two alkenes to form a cyclobutane derivative is termed a [2 + 2] cycloaddition reaction, and the reaction of a diene with an alkene to form a cyclohexene derivative is termed a [4 + 2] cycloaddition reaction ... [Pg.975]

Silver compounds are versatile catalysts for various cycloaddition reactions, including [2 + 1]-, [2 + 2]-, [3 + 2]-, and [4 + 2]-cycloadditions. An example for the silver-catalyzed formation of three-membered rings by [2+ l]-cycloaddi-tion is the silacyclopropanation reaction of mono- and disubstituted alkenes by silylene transfer from the cyclohexene silacyclopropane 432 that was reported recently by Woerpel et /.355,355a (Scheme 127). The reaction tolerates a number of functionalities in the substrate (OBn, OSiR3, BuTlC, etc.,) and is stereospecific with regard to the cisjtrans... [Pg.564]

Diels-Alder cycloaddition reaction (Sections 14.4-14.5 and 30.5) the reaction between a diene and a dienophile to yield a cyclohexene ring. [Pg.878]

The final series of five procedures presents optimized preparations of a variety of useful organic compounds. The first procedure in this group describes the preparation of 3-BROMO-2(H)-PYRAN-2-ONE, a heterodiene useful for (4+2] cycloaddition reactions. An optimized large scale preparation of 1,3,5-CYCLOOCTATRIENE, another diene useful for [4+2] cycloaddition, is detailed from the readily available 1,5-cyclooctadiene. Previously, the availability of this material has depended on the commercial availability of cyclooctatetraene at reasonable cost. A simple large scale procedure for the preparation of 3-PYRROLINE is then presented via initial alkylation of hexamethylenetetramine with (Z)-1,4-dichloro-2-butene. This material serves as an intermediate for the preparation of 2,5-disubstituted pyrroles and pyrrolidines via heteroatom-directed metalation and alkylation of suitable derivatives. The preparation of extremely acid- and base-sensitive materials by use of the retro Diels-Alder reaction is illustrated in the preparation of 2-CYCLOHEXENE-1.4-DIONE, a useful reactive dienophile and substrate for photochemical [2+2] cycloadditions. Functionalized ferrocene derivatives... [Pg.297]

Table 9. Fluorinated Cyclohexenes by [4 + 2]-Cycloaddition Reactions of Fluoroal-kenes... Table 9. Fluorinated Cyclohexenes by [4 + 2]-Cycloaddition Reactions of Fluoroal-kenes...
A classical example of cycloaddition reaction is the Diels-Alder reaction, which allowed the formation of six-membered rings. An example of the Diels-Alder reaction is the reaction between 1,3-butadiene and ethene to give cyclohexene. The 1,3-butadiene is a conjugated tt-system with [Att] electrons and the ethene is a [2tt] -electrons system. Thus, the Diels-Alder reaction between 1,3-butadiene and ethene to give cyclohexene is described as a [4+2]-cycloaddition reaction. [Pg.328]

The importance of the ethylene ketal described above with respect to stereocontrol of the de-Mayo reaction is emphasized by later published works of two other teams. Fetizon and co-workers obviously followed a similar concept and carried out photocycloaddition reactions with 96a in model studies (Scheme 23) (Si). As can be seen from retroaldol product 98, exclusive a attack of the cyclohexene has taken place. Thus, the relative stereochemistry of the BC ring connection is opposite to that of taxane. Totally comparable results were obtained by Berkowitz et al. in the course of cycloaddition reactions of cyclopentene, cyclohexene, or those of a cyclohexenone ketal to the camphor derivative 96b (.84). [Pg.221]

Methyltrioxorhenium has been found to be a universal catalyst for a number of [2-1-1] cycloaddition reactions, including nitrene, carbene, or oxo-atom addition to olefins <2001GC235>. Typically, to increase the chemical yield of the reaction, at least 5 equiv of an olefin is required. As with most nitrene transfer reactions, simple cyclic olefins such as cyclohexene produce a low chemical yield of aziridine. The authors assume that the intermediate of the reaction is a reactive rhenoxaziridine intermediate. 1,2-Dihydronaphthalene provides aziridine 28 in 43% chemical yield under these reaction conditions (Equation 11). [Pg.113]


See other pages where Cyclohexenes 2 + 2 + 2 cycloaddition reactions is mentioned: [Pg.245]    [Pg.308]    [Pg.205]    [Pg.351]    [Pg.280]    [Pg.32]    [Pg.385]    [Pg.224]    [Pg.351]    [Pg.332]    [Pg.106]    [Pg.58]    [Pg.727]    [Pg.390]    [Pg.32]    [Pg.393]    [Pg.68]    [Pg.68]    [Pg.720]    [Pg.9]    [Pg.404]    [Pg.38]    [Pg.86]    [Pg.32]   
See also in sourсe #XX -- [ Pg.1130 ]

See also in sourсe #XX -- [ Pg.1130 ]




SEARCH



Cyclohexene 2 + 2 + 2] cycloaddition reactions

Cyclohexene 2 + 2 + 2] cycloaddition reactions

Cyclohexene reaction

Cyclohexenes reactions

© 2024 chempedia.info