Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Antarafacial pathway

In contrast with the thermal [4 + 2] Diels-Alder reaction, the 2 + 2 cycloaddition of two alkenes to yield a cvclobutane can only be observed photo-chemically. The explanation follows from orbital-symmetry arguments. Looking at the ground-state HOMO of one alkene and the LUMO of the second alkene, it s apparent that a thermal 2 + 2 cycloaddition must take place by an antarafacial pathway (Figure 30.10a). Geometric constraints make the antarafacial transition state difficult, however, and so concerted thermal [2 + 2j cycloadditionsare not observed. [Pg.1189]

Thermal and photochemical cycloaddition reactions always take place with opposite stereochemistry. As with electrocyclic reactions, we can categorize cycloadditions according to the total number of electron pairs (double bonds) involved in the rearrangement. Thus, a thermal Diels-Alder [4 + 2] reaction between a diene and a dienophile involves an odd number (three) of electron pairs and takes place by a suprafacial pathway. A thermal [2 + 2] reaction between two alkenes involves an even number (two) of electron pairs and must take place by an antarafacial pathway. For photochemical cyclizations, these selectivities are reversed. The general rules are given in Table 30.2. [Pg.1190]

Cycloaddition reactions are those in which two unsaturated molecules add together to yield a cyclic product. For example, Diels-AJder reaction between a diene (four tt electrons) and a dienophile (two tt electrons) yields a cyclohexene. Cycloadditions can take place either by suprafacial or antarafacial pathways. Suprafacial cycloaddition involves interaction between lobes on the same face of one component and on the same face of the second component. Antarafacial cycloaddition involves interaction between lobes on the same face of one component ancl on opposite faces of the other component. The reaction course in a specific case can be found by looking at the symmetry of the HOMO of one component and the lowest unoccupied molecular orbital (LUMO) of the other component. [Pg.1198]

An intramolecular rearrangement of the conjugate acid of the triazene compound to form the oc-complex without an additional molecule of amine would correspond to a thermal [l,3]-sigmatropic rearrangement. However, such a mechanism can be ruled out on the grounds of the antarafacial pathway required from orbital symmetry considerations (Woodward-Hoffmann rules). [Pg.396]

As is the case for other pericyclic reactions, the selection rules for a thermal [i, ] sigmatropic reaction are reversed for the photochemical reaction. If irradiation of a 1,5-hexadiene produces the electronically excited state of one and only one of the two allyl components, then the HOMO of one component is (/f3, and the HOMO of ihe other component is suprafacial-suprafacial reaction (Figure 11.46) is forbidden (as is the antarafacial-antar-afacial pathway), but the antarafacial-suprafacial and suprafacial-antarafacial pathways are allowed (Figure 11.47). Analysis of higher sigmatropic reactions shows that the selection rules also reverse with the addition of a carbon-carbon double bond to either of the n systems. Thus, the [3,5] sigmatropic reaction is thermally allowed to be suprafacial-antarafacial or antarafacial-suprafacial and photochemically allowed to be suprafacial- suprafacial or antarafacial-antarafacial. Two of these reaction modes are illustrated in Figure 11.48. [Pg.724]


See other pages where Antarafacial pathway is mentioned: [Pg.1439]    [Pg.1123]    [Pg.822]    [Pg.1650]    [Pg.1189]    [Pg.1123]    [Pg.916]    [Pg.180]    [Pg.717]    [Pg.717]    [Pg.718]    [Pg.719]    [Pg.775]    [Pg.197]    [Pg.201]    [Pg.202]   
See also in sourсe #XX -- [ Pg.716 , Pg.717 , Pg.719 , Pg.721 , Pg.731 , Pg.739 , Pg.741 , Pg.743 , Pg.754 , Pg.767 , Pg.773 , Pg.774 ]




SEARCH



Antarafacial

Antarafacial-suprafacial pathway

© 2024 chempedia.info