Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclic nitrones, reaction with

Fluoride ion catalyzed reaction of the cyclic nitronate 1 with benzaldehyde provides a cyclic hcmiaeetal 2 in 95% diastereoselectivity18 with tra ,v,tr u.v-relationship of the protons in positions 2, 3 and 4. The relative configuration of the hemiacetal carbon position was not assigned. Upon reaction of the diastereomeric nitronate 3 at 25 °C the 4a-stereocenter is epimerized by fluoride ion such that hemiacetal 2 is once again obtained. In contrast, reaction of 3 at 0°C furnishes the diastereomeric product 4 in 23% yield 8. [Pg.632]

Similarly, the reaction of cyclic nitrones 187 with methyl isothiocyanate gives tetrahydroimidazo[l,5- ][l,2,4]oxa-diazol-2(l//)-thiones 129 (Equation 81) <2003PS(178)881, 2004MI7>. [Pg.273]

Dipolar cycloaddition reactions occurreadily even with non-activated dipo-larophiles, such as isolated alkenes. This contrasts with the Diels-Alder reaction, particularly for intermolecular reactions, in which an activated alkene as the dienophile is required. Like the Diels-Alder reaction, [3+2] cycloaddition reactions of 1,3-dipoles are reversible, although in most cases it is the kinetic product that is isolated. For the intermolecular cycloaddition of nitrile oxides or nitrones, two of the most frequently used 1,3-dipoles, to monosubstituted or 1,1-disubstituted alkenes (except highly electron-deficient alkenes), the oxygen atom of the 1,3-dipole becomes attached to the more highly substituted carbon atom of the alkene double bond. Hence the 5-substituted isoxazolidine 206 is generated from the cycloaddition of the cyclic nitrone 205 with propene (3.136). Reductive... [Pg.225]

The cycloaddition reaction of cyclic nitrones 415 with aryl isocyanates proceeds regio-and diastereoselectively (in the case of chiral nitrones) to give the cycloadducts 416". ... [Pg.140]

Diacetates of 1,4-butenediol derivatives are useful for double allylation to give cyclic compounds. l,4-Diacetoxy-2-butene (126) reacts with the cyclohexanone enamine 125 to give bicyclo[4.3.1]decenone (127) and vinylbicy-clo[3.2.1]octanone (128)[85,86]. The reaction of the 3-ketoglutarate 130 with cij-cyclopentene-3,5-diacetate (129) affords the furan derivative 131 [87]. The C- and 0-allylations of ambident lithium [(phenylsulfonyl)methylene]nitronate (132) with 129 give isoxazoline-2-oxide 133, which is converted into c -3-hydroxy-4-cyanocyclopentene (134)[S8]. Similarly, chiral m-3-amino-4-hyd-roxycyclopentene was prepared by the cyclization of yV-tosylcarbamate[89]. [Pg.308]

In a more recent work the same research group has applied cyclic and acyclic vinyl ethers in the oxazaborolidinone-catalyzed 1,3-dipolar cycloaddition reaction with nitrones [30]. The reaction between nitrone 5 and 2,3-dihydrofuran 6 with 20 mol% of the phenyl glycine-derived catalyst 3c, gave the product 7 in 56% yield as the sole diastereomer, however, with a low ee of 38% (Scheme 6.9). [Pg.219]

The above described reaction has been extended to the application of the AlMe-BINOL catalyst to reactions of acyclic nitrones. A series chiral AlMe-3,3 -diaryl-BINOL complexes llb-f was investigated as catalysts for the 1,3-dipolar cycloaddition reaction between the cyclic nitrone 14a and ethyl vinyl ether 8a [34], Surprisingly, these catalysts were not sufficiently selective for the reactions of cyclic nitrones with ethyl vinyl ether. Use of the tetramethoxy-substituted derivative llg as the catalyst for the reaction significantly improved the results (Scheme 6.14). In the presence of 10 mol% llg the reaction proceeded in a mixture of CH2CI2 and petroleum ether to give the product 15a in 79% isolated yield. The diastereoselectiv-ity was the same as in the acyclic case giving an excellent ratio of exo-15a and endo-15a of >95 <5, and exo-15a was obtained with up to 82% ee. [Pg.222]

The reactions of nitrones constitute the absolute majority of metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions. Boron, aluminum, titanium, copper and palladium catalysts have been tested for the inverse electron-demand 1,3-dipolar cycloaddition reaction of nitrones with electron-rich alkenes. Fair enantioselectivities of up to 79% ee were obtained with oxazaborolidinone catalysts. However, the AlMe-3,3 -Ar-BINOL complexes proved to be superior for reactions of both acyclic and cyclic nitrones and more than >99% ee was obtained in some reactions. The Cu(OTf)2-BOX catalyst was efficient for reactions of the glyoxylate-derived nitrones with vinyl ethers and enantioselectivities of up to 93% ee were obtained. [Pg.244]

Accordingly, cyclic nitronates can be a useful synthetic equivalent of functionalized nitrile oxides, while reaction examples are quite limited. Thus, 2-isoxazoline N-oxide and 5,6-dihydro-4H-l,2-oxazine N-oxide, as five- and six-membered cyclic nitronates, were generated in-situ by dehydroiodination of 3-iodo-l-nitropropane and 4-iodo-l-nitrobutane with triethylamine and trapped with monosubstituted alkenes to give 5-substituted 3-(2-hydroxyethyl)isoxazolines and 2-phenylperhydro-l,2-oxazino[2,3-fe]isoxazole, respectively (Scheme 7.26) [72b]. Upon treatment with a catalytic amount of trifluoroacetic acid, the perhydro-l,2-oxazino[2,3-fe]isoxazole was quantitatively converted into the corresponding 2-isoxazoline. Since a method for catalyzed enantioselective nitrone cycloadditions was established and cyclic nitronates should behave like cyclic nitrones in reactivity, there would be a good chance to attain catalyzed enantioselective formation of 2-isoxazolines via nitronate cycloadditions. [Pg.272]

We are the first group to succeed with the highly enantioselective 1,3-dipolar cycloadditions of nitronates [75]. Thus, the reaction of 5,6-dihydro-4H-l,2-oxazine N-oxide as a cyclic nitronate to 3-acryloyl-2-oxazilidinone, at -40 °C in dichloro-methane in the presence of MS 4 A and l ,J -DBFOX/Ph-Ni(II) complexes, gave a diastereomeric mixture of perhydroisoxazolo[2,3-fe][l,2]oxazines as the ring-fused isoxazolidines in high yields. The J ,J -DBFOX/Ph aqua complex prepared from... [Pg.272]

Fig. 16 [3 -I- 2] cycloaddition reactions of cyclic nitrones with enals catalyzed by 29a... Fig. 16 [3 -I- 2] cycloaddition reactions of cyclic nitrones with enals catalyzed by 29a...
Bicyclic trimethylsilyl nitronates undergo stereoselective Henry reactions with benzalde-hyde in the presence of fluoride ion to give cyclic hemiacetals in good yield with high diastereo-selectivity (95% ds) (Eq. 3.68).110... [Pg.54]

Nitrocycloalkanones can be successfully C-allylated by Pd(0)-catalyzed reaction with various allyl carbonates and 1,3-dienemonoepoxides under neutral conditions, as shown in Eqs. 5.56 and 5.57, respectively.801 The product of Eq. 5.56 is converted into cyclic nitrone via the reduction of nitro group with H2-Pd/C followed by hydrolysis and cyclization.80b... [Pg.142]

Although Lewis acid-catalyzed-Diels-Alder reactions of enones are common, there are few reports on the catalysis of Diels-Alder reaction of nitroalkenes. The reaction of nitroalkenes with alkenes in the presence of Lewis acids undergoes a different course of reaction to give cyclic nitronates (see Section 8.3). Knochel reported an enhanced reactivity and selectivity of the intramolecular Diels-Alder reaction using silica gel as Lewis acid in hexane (Eq. 8.19).31... [Pg.239]

Cycloaddition of the cyclic nitrone derived from proline benzyl ester with alkenes proceeds readily to give isoxazolidines with good regio-and stereoselectivity (Eq. 8.47).68 The reaction favors exo-mode addition. However, certain cycloadditions are reversible and therefore the product distribution may reflect thermodynamic rather than kinetic control. [Pg.251]

Alkyl and silyl nitronates are, in principle, /V-alkoxy and /V-silyloxynitrones, and they can react with alkenes in 1,3-dipolar cycloadditions to form /V-alkoxy- or /V-silyloxyisoxaz.olidine (see Scheme 8.25). The alkoxy and silyloxy groups can be eliminated from the adduct on heating or by acid treatment to form 2-isoxazolines. It should be noticed that isoxazolines are also obtained by the reaction of nitrile oxides with alkenes thus, nitronates can be considered as synthetic equivalents of nitrile oxides. Since the pioneering work by Torssell et al. on the development of silyl nitronates, this type of reaction has become a useful synthetic tool. Recent development for generation of cyclic nitronates by hetero Diels-Alder reactions of nitroalkenes is discussed in Section 8.3. [Pg.267]

Recently, Denmark and coworkers have developed a new strategy for the construction of complex molecules using tandem [4+2]/[3+2]cycloaddition of nitroalkenes.149 In the review by Denmark, the definition of tandem reaction is described and tandem cascade cycloadditions, tandem consecutive cycloadditions, and tandem sequential cycloadditions are also defined. The use of nitroalkenes as heterodienes leads to the development of a general, high-yielding, and stereoselective method for the synthesis of cyclic nitronates (see Section 5.2). These dipoles undergo 1,3-dipolar cycloadditions. However, synthetic applications of this process are rare in contrast to the functionally equivalent cycloadditions of nitrile oxides. This is due to the lack of general methods for the preparation of nitronates and their instability. Thus, as illustrated in Scheme 8.29, the potential for a tandem process is formulated in the combination of [4+2] cycloaddition of a donor dienophile with [3+2]cycload-... [Pg.274]

Enantio-pure five-membered cyclic nitrones (154) and (155) were formed in a one-pot synthesis from the corresponding lactols (152) and (153) as the result of their reactions with unsubstituted hydroxylamine and by (a) subsequent treatment with MsCl and NaOH (Scheme 2.55) (310a) or by (b) subsequent treatment with TBDMSC1,12, TPP, imidazole, and tetrabutylammonium fluoride (TBAF) (310b). [Pg.173]

Formation of nitrones can be achieved in the first stage of a Krohnke type reaction in which p-n trosodi methy 1 an dine reacts with 2-oo-bromoacetylphenoxathiin in alkaline medium (336). The synthesis of a series of cyclic nitrones of structure (182) has been achieved by regioselective, and by an unusual [3 + 2] cycloaddition of a-nitrosostyrenes (181) to 1,3-diazabuta-l,3-dienes (180) (Scheme 2.64) (337a). Theoretical studies of the substitution effect at the imine nitrogen on the competitive [3 + 2] and [4 + 2] mechanisms of cycloaddition of simple acyclic imines with nitrosoalkenes have been reported (337b). [Pg.178]

Chiral cyclic nitrones (185) were synthesized in the reaction of isonitroso-derivatives of Meldmm s acid (183) with ketones in boiling toluene (338—344). The reaction is likely to proceed, as in the case of the cycloaddition of a-nitrosostyrenes, by [3 + 2] cycloaddition of ketones to nitrosoketone (184), resulting from thermolysis of (183) (Scheme 2.65) (345). [Pg.178]

Metalated cyclic aldo-nitrones are characterized by high reactivity toward electrophilic reagents. Reactions with aldehydes and ketones afford satisfactory yields of a-hydroxymethyl substituted derivatives of nitrones (551). The reactions were also carried out with a number of aliphatic, aromatic, and hetero-aromatic aldehydes and ketones (Schemes 2.124 and 2.125). [Pg.230]

Thus, metalation of cyclic nitrones, followed by successive reactions with electrophilic reagents serves as a synthetic method toward a-heteroatom substituted nitrones, which are inaccessible by other methods. It is noteworthy that these reactions can take place only with cyclic nitrones with E -configuration of the aldonitrone group. [Pg.231]

The 1,3-dipolar cycloaddition of nitrones to vinyl ethers is accelerated by Ti(IV) species. The efficiency of the catalyst depends on its complexation capacity. The use of Ti( PrO)2Cl2 favors the formation of trans cycloadducts, presumably, via an endo bidentate complex, in which the metal atom is simultaneously coordinated to the vinyl ether and to the cyclic nitrone or to the Z-isomer of the acyclic nitrones (800a). Highly diastereo- and enantioselective 1,3-dipolar cycloaddition reactions of nitrones with alkenes, catalyzed by chiral polybi-naphtyl Lewis acids, have been developed. Isoxazolidines with up to 99% ee were obtained. The chiral polymer ligand influences the stereoselectivity to the same extent as its monomeric version, but has the advantage of easy recovery and reuse (800b). [Pg.358]

Another approach to the synthesis of cyclic nitronates is based on cycloaddition reactions (Scheme 3.11, Eq. 2), where two bonds (C-C and C-O) are simultaneously formed. This strategy allows one to perform stereoselective processes with the use of very simple precursors. However, this approach to the synthesis of five-membered cyclic nitronates implies that reactive and very unstable nitrocarbenes are involved in the process. [Pg.444]

The process shown in Scheme 3.16 is rather interesting. It should be noted that in most cases this reaction is very stereoselective with respect to the arrangement of the substituents at C-4 and C-5 atoms. In light of recent data on the possible isomerization of nitrocyclopropanes (13) to form five-membered cyclic nitronates (5) (for more details, see Section 3.2.2.1.2), low chemoselectivity of many reactions involving sulfur ylides does not seem to be so fatal. [Pg.449]

Analogous intramolecular cyclization can be carried out by performing the reaction of CAN with nitro olefin (20) (73) (Scheme 3.23). However, this reaction is unlikely to be useful in the synthesis of a broad range of cyclic nitronates because the starting nitro compounds (similar to (20)) are difficult to prepare. [Pg.452]

It was demonstrated (83) that the reaction of dinitrostyrenes (28) with aryl diazo compounds RR CN2 afford nitronates (24 g) in good yields. These products contain the nitro group at the C-4 atom in the trans position with respect to the substituent at C-5 (if R =H). Since the reaction mechanism remains unknown, the direct formation of cyclic nitronates (24 g) from pyrazolines A without the intermediate formation of cyclopropanes also cannot be ruled out. [Pg.457]

Synthesis of Six-membered Cyclic Nitronates by the [4 + 2]-cycloaddi-tion Reaction The [4 + 2]-cycloaddition reaction of conjugated nitroalkenes (42) with olefins (43) is the most powerful and widely used method for the synthesis of six-membered cyclic nitronates (35) (Scheme 3.38). [Pg.462]

However, intramolecular O-alkylation can be performed under particular conditions leading to of annelation of a seven-membered heterocycle. Japanese researchers (170) prepared the corresponding seven-membered cyclic nitronates (50a-c) in good yields by the reaction of triethylamine with brominated aryl ketones (49a-c) containing the nitromethyl group in the ortho position. [Pg.469]

Evidently, the cleavage of the weak endocyclic N-0 bond is the driving force of the ring opening. The nucleophilicity of the /V-oxide oxygen atom in nitronates facilitates the backward cyclization reaction (in the case of minimization of steric hindrance). With regard to the above mentioned one cannot exclude the tautomerism between cyclic nitronates 100 and open (or chain) isomers 101. [Pg.514]

For example, the reaction of nitronates (123) with a zinc copper pair in ethanol followed by treatment of the intermediate with aqueous ammonium chloride a to give an equilibrium mixture of ketoximes (124) and their cyclic esters 125. Heating of this mixture b affords pyocoles (126). Successive treatment of nitronates (123) with boron trifluoride etherate and water c affords 1,4-diketones (127). Catalytic hydrogenation of acyl nitronates (123) over platinum dioxide d or 5% rhodium on aluminum oxide e gives a-hydroxypyrrolidines (128) or pyrrolidines 129, respectively. Finally, smooth dehydration of a-hydroxypyrrolidines (128) into pyrrolines (130f) can be performed. [Pg.528]

The reactions of ammonia or primary amines with five-membered cyclic nitronates containing the EWG -group at the C-5 atom involve deoxygenation of the nitronate fragment, aromatization of the ring, and amidation of the ester... [Pg.531]

The reactions of strong nucleophiles and electrophiles with cyclic nitronates can be accompanied by more extensive transformations. [Pg.533]

For example, the reaction of lithium diisopropylamine (82) with N-oxide (134) leads to a rather selective deprotonation at the C-4 atom (Scheme 3.111, Eq. 1). An analogous transfer of double bond was observed for six-membered cyclic nitronates 135 (Eq. 2) (143). However, intermediates (136) that formed in the latter case undergo fast fragmentation and give conjugated ene-oximes (137) as the final products. [Pg.533]

The main procedure for deoxygenation of similar nitronates is based on their reaction with trialkyl phosphites (Scheme 3.114). These reactions readily proceed with live- (45, 55, 320, 321) and six- membered (143) cyclic nitronates. [Pg.534]


See other pages where Cyclic nitrones, reaction with is mentioned: [Pg.463]    [Pg.99]    [Pg.171]    [Pg.213]    [Pg.273]    [Pg.285]    [Pg.223]    [Pg.223]    [Pg.250]    [Pg.168]    [Pg.174]    [Pg.334]    [Pg.379]    [Pg.446]    [Pg.531]   


SEARCH



Cyclic nitronates

Cyclic nitrone

Cyclic nitrones

Cyclic reactions

Nitrone reactions

Nitrones, reactions

Reactions with nitrones

© 2024 chempedia.info